scispace - formally typeset
Journal ArticleDOI

MEMS power generator with transverse mode thin film PZT

TLDR
In this paper, a cantilever device is designed to have a flat structure with a proof mass added to the end to create electrical energy via the piezoelectric effect.
Abstract
A thin film lead zirconate titanate, Pb(Zr,Ti)O 3 (PZT), MEMS power generating device is developed. It is designed to resonate at specific frequencies from an external vibrational energy source, thereby creating electrical energy via the piezoelectric effect. Our cantilever device is designed to have a flat structure with a proof mass added to the end. The Pt/Ti top electrode is patterned into an interdigitated shape on top of the sol–gel-spin coated PZT thin film in order to employ the d33 mode of the piezoelectric transducer. This d33 mode design generates 20 times higher voltage than that of the d31 mode design of the same beam dimension. The base-shaking experiments at the first resonant frequency (13.9 kHz) generate charge proportional to the tip displacement of the cantilever with a linearity coefficient of 4.14 pC/ m. A

read more

Citations
More filters
Journal ArticleDOI

Energy harvesting vibration sources for microsystems applications

TL;DR: A comprehensive review of existing piezoelectric generators is presented in this paper, including impact coupled, resonant and human-based devices, including large scale discrete devices and wafer-scale integrated versions.
Journal ArticleDOI

A review of power harvesting using piezoelectric materials (2003–2006)

TL;DR: The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans as mentioned in this paper, and the use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement.
Journal ArticleDOI

Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices

TL;DR: The principles and state-of-art in motion-driven miniature energy harvesters are reviewed and trends, suitable applications, and possible future developments are discussed.
Journal ArticleDOI

A micro electromagnetic generator for vibration energy harvesting

TL;DR: In this paper, the authors presented a small (component volume 1 cm3, practical volume 1 5 cm3) electromagnetic generator utilizing discrete components and optimized for a low ambient vibration level based upon real application data.
Journal ArticleDOI

Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems

TL;DR: In this article, the authors provide an overview of strategies for powering MEMS via non-regenerative and regenerative power supplies, along with recent advancements, and discuss future trends and applications for piezoelectric energy harvesting technology.
References
More filters
Journal ArticleDOI

The Tension of Metallic Films Deposited by Electrolysis

TL;DR: It is well known that metallic films deposited electrolytically are in many cases liable to peel off if deposited to any considerable thickness as discussed by the authors, especially if it does not adhere very tightly to the body on which it is deposited.
Journal ArticleDOI

A study of low level vibrations as a power source for wireless sensor nodes

TL;DR: The goal of this paper is not to suggest that the conversion of vibrations is the best or most versatile method to scavenge ambient power, but to study its potential as a viable power source for applications where vibrations are present.
Journal ArticleDOI

Analysis of a micro-electric generator for microsystems

TL;DR: In this article, the authors proposed a microgenerator that generates electricity from mechanical energy when embedded in a vibrating medium, and the power produced is proportional to the cube of the frequency of vibration, and that the mass deflection should be as large as possible.
Journal ArticleDOI

Vibration-to-electric energy conversion

TL;DR: A system to convert ambient mechanical vibration into electrical energy for use in powering autonomous low power electronic systems and an ultra low-power delay locked loop (DLL)-based system capable of autonomously achieving a steady-state lock to the vibration frequency is described.
Proceedings ArticleDOI

Parasitic power harvesting in shoes

TL;DR: This paper examines three different devices that can be built into a shoe and used for generating electrical power "parasitically" while walking, two of which are piezoelectric in nature and one is a shoe-mounted rotary magnetic generator.
Related Papers (5)