scispace - formally typeset
Journal ArticleDOI

Metal Acetylacetonate Series in Interface Engineering for Full Low-Temperature-Processed, High-Performance, and Stable Planar Perovskite Solar Cells with Conversion Efficiency over 16% on 1 cm2 Scale

TLDR
A series of metal acetylacetonates produced by a full low-temperature (below 100 °C) process are successfully employed to obtain both "multistable" and high-performance planar-inverted perovskite solar cells.
Abstract
A series of metal acetylacetonates produced by a full low-temperature (below 100 °C) process are successfully employed to obtain both "multistable" and high-performance planar-inverted perovskite solar cells. All the three kinds of champion cells in small area exhibit over 18% in conversion-efficiency with negligible hysteresis, along with a conversion efficiency above 16% for planar PSCs in an aperture area of over 1 cm2 .

read more

Citations
More filters
Journal ArticleDOI

Advances and challenges to the commercialization of organic–inorganic halide perovskite solar cell technology

TL;DR: In this paper, the progress of perovskite solar cells with a particular emphasis on fabrication processes and instrumentation that have scale-up potential is reviewed, focusing on lifetime measurement and quantification protocols for commercialization.
Journal ArticleDOI

Alkali Chlorides for the Suppression of the Interfacial Recombination in Inverted Planar Perovskite Solar Cells

TL;DR: Wang et al. as discussed by the authors proposed a full spectrum solar electricity generation (FSSEG) system based on full spectral solar power generation (FSEG), which is the state-of-the-art in the world.
Journal ArticleDOI

2D metal-organic framework for stable perovskite solar cells with minimized lead leakage

TL;DR: A thiol-functionalized 2D conjugated metal–organic framework as an electron-extraction layer at the perovskite/cathode interface enables the realization of highly stable perovSKite solar cells with minimized lead ion leakage.
References
More filters
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Journal ArticleDOI

Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.

TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Journal ArticleDOI

Efficient planar heterojunction perovskite solar cells by vapour deposition

TL;DR: It is shown that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures.
Journal Article

Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber

TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Related Papers (5)