scispace - formally typeset
Journal ArticleDOI

Metal-free carbocatalysis in advanced oxidation reactions

TLDR
This Account showcases the recent contributions to metal-free catalysis in advanced oxidation, including design of nanocarbon catalysts, exploration of intrinsic active sites, and identification of reactive species and reaction pathways, and offers perspectives on carbocatalysis for future environmental applications.
Abstract
ConspectusCatalytic processes have remarkably boosted the rapid industrializations in chemical production, energy conversion, and environmental remediation. As one of the emerging applications of carbocatalysis, metal-free nanocarbons have demonstrated promise as catalysts for green remediation technologies to overcome the poor stability and undesirable metal leaching in metal-based advanced oxidation processes (AOPs). Since our reports of heterogeneous activation of persulfates with low-dimensional nanocarbons, the novel oxidative system has raised tremendous interest for degradation of organic contaminants in wastewater without secondary contamination. In this Account, we showcase our recent contributions to metal-free catalysis in advanced oxidation, including design of nanocarbon catalysts, exploration of intrinsic active sites, and identification of reactive species and reaction pathways, and we offer perspectives on carbocatalysis for future environmental applications.The journey starts with the dis...

read more

Citations
More filters
Journal ArticleDOI

Cobalt silicate hydroxide nanosheets in hierarchical hollow architecture with maximized cobalt active site for catalytic oxidation

TL;DR: A facile dissolution-regrowth strategy was developed in synthesis of hierarchical hollow nanospheres of cobalt silicate hydroxide (CSH-80) for maximizing cobalt active sites on unit mass basis, which is different from the conventional supported cobalt catalysts.
Journal ArticleDOI

Synthesis strategies and emerging mechanisms of metal-organic frameworks for sulfate radical-based advanced oxidation process: A review

TL;DR: In this article, an in-depth overview of state-of-the-art MOFs-based materials currently available in SR-AOPs applications for environmental remediation is presented.
Journal ArticleDOI

Non-radical PMS activation by the nanohybrid material with periodic confinement of reduced graphene oxide (rGO) and Cu hydroxides.

TL;DR: It is believed that this novel Cu-rGO LDH/PMS system will open up a new avenue to design efficient metal-carbon nanohybrid catalysts for the degradation of emerging aquatic pollutants in a real application.
Journal ArticleDOI

Persulfate non-radical activation by nano-CuO for efficient removal of chlorinated organic compounds: Reduced graphene oxide-assisted and CuO (0 0 1) facet-dependent

TL;DR: In this article, reduced graphene oxide modified spindle-like CuO (CuO/rGO, no preferential exposed crystal facet) and sheet-like cuO-persulfate system exhibited much better 2,4,6-trichlorophenol (TCP) removal rate than spindle like CuO-polygonal polysilicon dioxide (SiO)-based CuO.
References
More filters
Journal ArticleDOI

Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance†

TL;DR: In this paper, Mesoporous graphene doped with both N and S atoms (N-S-G) was prepared in one step and studied as an electrochemical catalyst for the oxygen reduction reaction (ORR).
Journal ArticleDOI

Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects

TL;DR: In this paper, the authors provide a state-of-the-art review on the development in heterogeneous catalysts including single metal, mixed metal, and nonmetal carbon catalysts for organic contaminants removal, with particular focus on peroxymonosulfate (PMS) activation.
Journal ArticleDOI

Environmental applications of carbon-based nanomaterials.

TL;DR: This review critically assesses the contributions of carbon-based nanomaterials to a broad range of environmental applications: sorbents, high-flux membranes, depth filters, antimicrobial agents, environmental sensors, renewable energy technologies, and pollution prevention strategies.
Journal ArticleDOI

Iron Encapsulated within Pod‐like Carbon Nanotubes for Oxygen Reduction Reaction

TL;DR: Chainmail for catalysts: a catalyst with iron nanoparticles confined inside pea-pod-like carbon nanotubes exhibits a high activity and remarkable stability as a cathode catalyst in polymer electrolyte membrane fuel cells (PEMFC), even in presence of SO(2).
Journal ArticleDOI

Nanocarbons for the Development of Advanced Catalysts

TL;DR: This poster presents a probabilistic procedure to evaluate the response of the H2O/O2 mixture to various pyrolysis conditions and shows promising results in both the horizontal and the vertical domain.
Related Papers (5)