scispace - formally typeset
Journal ArticleDOI

Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications

TLDR
Examples of the design and biomedical application of multifunctional magnetic nanoparticles are reviewed, indicating that such nanoparticles could be applied to biological medical problems such as protein purification, bacterial detection, and toxin decorporation.
Abstract
The combination of nanotechnology and molecular biology has developed into an emerging research area: nanobiotechnology. Magnetic nanoparticles are well-established nanomaterials that offer controlled size, ability to be manipulated externally, and enhancement of contrast in magnetic resonance imaging (MRI). As a result, these nanoparticles could have many applications in biology and medicine, including protein purification, drug delivery, and medical imaging. Because of the potential benefits of multimodal functionality in biomedical applications, researchers would like to design and fabricate multifunctional magnetic nanoparticles. Currently, there are two strategies to fabricate magnetic nanoparticle-based multifunctional nanostructures. The first, molecular functionalization, involves attaching antibodies, proteins, and dyes to the magnetic nanoparticles. The other method integrates the magnetic nanoparticles with other functional nanocomponents, such as quantum dots (QDs) or metallic nanoparticles. Because they can exhibit several features synergistically and deliver more than one function simultaneously, such multifunctional magnetic nanoparticles could have unique advantages in biomedical applications. In this Account, we review examples of the design and biomedical application of multifunctional magnetic nanoparticles. After their conjugation with proper ligands, antibodies, or proteins, the biofunctional magnetic nanoparticles exhibit highly selective binding. These results indicate that such nanoparticles could be applied to biological medical problems such as protein purification, bacterial detection, and toxin decorporation. The hybrid nanostructures, which combine magnetic nanoparticles with other nanocomponents, exhibit paramagnetism alongside features such as fluorescence or enhanced optical contrast. Such structures could provide a platform for enhanced medical imaging and controlled drug delivery. We expect that the combination of unique structural characteristics and integrated functions of multicomponent magnetic nanoparticles will attract increasing research interest and could lead to new opportunities in nanomedicine.

read more

Citations
More filters
Journal ArticleDOI

Bimetallic Nanocrystals: Syntheses, Properties, and Applications

TL;DR: A comprehensive review of recent research activities on bimetallic nanocrystals, featuring key examples from the literature that exemplify critical concepts and place a special emphasis on mechanistic understanding.
Journal ArticleDOI

Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology.

TL;DR: Chemistries that Facilitate Nanotechnology Kim E. Sapsford,† W. Russ Algar, Lorenzo Berti, Kelly Boeneman Gemmill,‡ Brendan J. Casey,† Eunkeu Oh, Michael H. Stewart, and Igor L. Medintz .
Journal ArticleDOI

Biological applications of magnetic nanoparticles

TL;DR: An overview about biological applications of magnetic colloidal nanoparticles will be given, which comprises their synthesis, characterization, and in vitro and in vivo applications, to address the remaining challenges for an extended application of magnetic nanoparticles in medicine.
References
More filters
Journal ArticleDOI

Mussel-Inspired Surface Chemistry for Multifunctional Coatings

TL;DR: Inspired by the composition of adhesive proteins in mussels, dopamine self-polymerization is used to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics.
Journal ArticleDOI

Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics

TL;DR: The new generations of qdots have far-reaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.
Journal ArticleDOI

Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications

TL;DR: This review discusses the synthetic chemistry, fluid stabilization and surface modification of superparamagnetic iron oxide nanoparticles, as well as their use for above biomedical applications.
Journal ArticleDOI

Formation of hollow nanocrystals through the nanoscale Kirkendall effect

TL;DR: A simple extension of the process yielded platinum–cobalt oxide yolk-shell nanostructures, which may serve as nanoscale reactors in catalytic applications, and provides a general route to the synthesis of hollow nanostructureures of a large number of compounds.
Related Papers (5)