scispace - formally typeset
Journal ArticleDOI

Multiple-antenna channel hardening and its implications for rate feedback and scheduling

TLDR
A central limit theorem is proved for MIMO channels with a large number of antennas, which is described as a "channel-hardening" result for data and voice services, scheduling, and rate feedback.
Abstract
Wireless data traffic is expected to grow over the next few years and the technologies that will provide data services are still being debated. One possibility is to use multiple antennas at base stations and terminals to get very high spectral efficiencies in rich scattering environments. Such multiple-input/multiple-output (MIMO) channels can then be used in conjunction with scheduling and rate-feedback algorithms to further increase channel throughput. This paper provides an analysis of the expected gains due to scheduling and bits needed for rate feedback. Our analysis requires an accurate approximation of the distribution of the MIMO channel mutual information. Because the exact distribution of the mutual information in a Rayleigh-fading environment is difficult to analyze, we prove a central limit theorem for MIMO channels with a large number of antennas. While the growth in average mutual information (capacity) of a MIMO channel with the number of antennas is well understood, it turns out that the variance of the mutual information can grow very slowly or even shrink as the number of antennas grows. We discuss implications of this "channel-hardening" result for data and voice services, scheduling, and rate feedback. We also briefly discuss the implications when shadow fading effects are included.

read more

Citations
More filters
Journal ArticleDOI

Cognitive radio: brain-empowered wireless communications

TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Book

Wireless Communications

Journal ArticleDOI

Capacity limits of MIMO channels

TL;DR: An overview of the extensive results on the Shannon capacity of single-user and multiuser multiple-input multiple-output (MIMO) channels is provided and it is shown that the capacity region of the MIMO multiple access and the largest known achievable rate region (called the dirty-paper region) for the M IMO broadcast channel are intimately related via a duality transformation.
Book

Random Matrix Theory and Wireless Communications

TL;DR: A tutorial on random matrices is provided which provides an overview of the theory and brings together in one source the most significant results recently obtained.
Journal ArticleDOI

Guaranteeing Secrecy using Artificial Noise

TL;DR: This paper considers the problem of secret communication between two nodes, over a fading wireless medium, in the presence of a passive eavesdropper, and assumes that the transmitter and its helpers (amplifying relays) have more antennas than the eavesdroppers.
References
More filters
Book

Elements of information theory

TL;DR: The author examines the role of entropy, inequality, and randomness in the design of codes and the construction of codes in the rapidly changing environment.
Journal ArticleDOI

Capacity of Multi‐antenna Gaussian Channels

TL;DR: In this paper, the authors investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading, and derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas.

A table of integrals

TL;DR: Basic Forms x n dx = 1 n + 1 x n+1 (1) 1 x dx = ln |x| (2) udv = uv − vdu (3) 1 ax + bdx = 1 a ln|ax + b| (4) Integrals of Rational Functions
Book

Microwave Mobile Communications

TL;DR: An in-depth and practical guide, Microwave Mobile Communications will provide you with a solid understanding of the microwave propagation techniques essential to the design of effective cellular systems.
Journal ArticleDOI

Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas

TL;DR: This paper addresses digital communication in a Rayleigh fading environment when the channel characteristic is unknown at the transmitter but is known (tracked) at the receiver with the aim of leveraging the already highly developed 1-D codec technology.
Related Papers (5)