scispace - formally typeset
Open AccessJournal ArticleDOI

Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut

Reads0
Chats0
TLDR
The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.
Abstract
Metal halides perovskites, such as hybrid organic–inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4–15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410–700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12–42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiativ...

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Perovskite photonic sources

TL;DR: In this article, the authors discuss the properties of perovskites that benefit light emission, review recent progress in perov-skite electroluminescent diodes and optically pumped lasers, and examine the remaining challenges in achieving continuous-wave and electrically driven lasing.
Journal ArticleDOI

Inorganic caesium lead iodide perovskite solar cells

TL;DR: In this paper, the authors showed that the organic cation is not essential, but simply a convenience for forming lead triiodide perovskites with good photovoltaic properties.
Journal ArticleDOI

Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals

TL;DR: It is found that ligand binding to the NC surface is highly dynamic, and therefore, ligands are easily lost during the isolation and purification procedures, and when a small amount of both oleic acid and oleylamine is added, the NCs can be purified, maintaining optical, colloidal, and material integrity.
Journal ArticleDOI

The surface science of nanocrystals.

TL;DR: The role of surface ligands in tuning and rationally designing properties of functional nanomaterials and their importance for biomedical and optoelectronic applications is focused on and an assessment of application-targeted surface engineering is concluded.
References
More filters
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Journal ArticleDOI

Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites

TL;DR: In this paper, a simple route to the production of high-quality CdE (E=S, Se, Te) semiconductor nanocrystallites is presented, based on pyrolysis of organometallic reagents by injection into a hot coordinating solvent.
Journal ArticleDOI

Phonons and related crystal properties from density-functional perturbation theory

TL;DR: In this paper, the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudopotential method, is reviewed.
Journal ArticleDOI

Interface engineering of highly efficient perovskite solar cells

TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Journal ArticleDOI

The emergence of perovskite solar cells

TL;DR: In this article, a review describes the rapid progress that has been made in hybrid organic-inorganic perovskite solar cells and their applications in the photovoltaic sector.
Related Papers (5)