scispace - formally typeset
Open AccessJournal ArticleDOI

Perovskite photonic sources

Brandon R. Sutherland, +1 more
- 01 May 2016 - 
- Vol. 10, Iss: 5, pp 295-302
TLDR
In this article, the authors discuss the properties of perovskites that benefit light emission, review recent progress in perov-skite electroluminescent diodes and optically pumped lasers, and examine the remaining challenges in achieving continuous-wave and electrically driven lasing.
Abstract
The prospects for light-emitting diodes and lasers based on perovskite materials are reviewed. The field of solution-processed semiconductors has made great strides; however, it has yet to enable electrically driven lasers. To achieve this goal, improved materials are required that combine efficient (>50% quantum yield) radiative recombination under high injection, large and balanced charge-carrier mobilities in excess of 10 cm2 V−1 s−1, free-carrier densities greater than 1017 cm−3 and gain coefficients exceeding 104 cm−1. Solid-state perovskites are — in addition to galvanizing the field of solar electricity — showing great promise in photonic sources, and may be the answer to realizing solution-cast laser diodes. Here, we discuss the properties of perovskites that benefit light emission, review recent progress in perovskite electroluminescent diodes and optically pumped lasers, and examine the remaining challenges in achieving continuous-wave and electrically driven lasing.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control

TL;DR: Solution-processed CsPbBr3 quantum-dot light-emitting diodes with a 50-fold external quantum efficiency improvement are achieved through balancing surface passivation and carrier injection via ligand density control, which induces the coexistence of high levels of ink stability, photoluminescence quantum yields, thin-film uniformity, and carrier-injection efficiency.
Journal ArticleDOI

Towards stable and commercially available perovskite solar cells

TL;DR: Park et al. as discussed by the authors proposed a reproducible manufacturing method for perovskite solar cells, as well as routes to manage grain boundaries and interfacial charge transport to achieve long-term stability.
Journal ArticleDOI

Two-Dimensional Hybrid Halide Perovskites: Principles and Promises.

TL;DR: This Perspective begins with a historical flashback to early reports before the "perovskite fever", and follows this original work to its fruition in the present day, where 2D halide perovskites are in the spotlight of current research, offering characteristics desirable in high-performance optoelectronics.
Journal ArticleDOI

Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation.

TL;DR: Solution-processable halide perovskites have high luminous efficiency and excellent chemical tunability, making them ideal candidates for light-emitting diodes, and Yang et al. achieve high external quantum efficiency of 14% in the devices by fine-tuning the phase and passivating the surface defects.
References
More filters
Journal ArticleDOI

Light-emitting diodes based on conjugated polymers

TL;DR: In this article, the authors demonstrate that poly(p-phenylene vinylene), prepared by way of a solution-processable precursor, can be used as the active element in a large-area light-emitting diode.
Journal ArticleDOI

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Journal ArticleDOI

Sequential deposition as a route to high-performance perovskite-sensitized solar cells

TL;DR: A sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film that greatly increases the reproducibility of their performance and allows the fabrication of solid-state mesoscopic solar cells with unprecedented power conversion efficiencies and high stability.
Journal ArticleDOI

Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.

TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Related Papers (5)