scispace - formally typeset
Journal ArticleDOI

Nanoelectronic biosensors based on CVD grown graphene

Reads0
Chats0
TLDR
Graphene is a promising candidate for the development of real-time nanoelectronic biosensors and is demonstrated the use of large-sized CVD grown graphene films configured as field-effect transistors for real- time biomolecular sensing.
Abstract
Graphene, a single-atom-thick and two-dimensional carbon material, has attracted great attention recently. Because of its unique electrical, physical, and optical properties, graphene has great potential to be a novel alternative to carbon nanotubes in biosensing. We demonstrate the use of large-sized CVD grown graphene films configured as field-effect transistors for real-time biomolecular sensing. Glucose or glutamate molecules were detected by the conductance change of the graphene transistor as the molecules are oxidized by the specific redox enzyme (glucose oxidase or glutamic dehydrogenase) functionalized onto the graphene film. This study indicates that graphene is a promising candidate for the development of real-time nanoelectronic biosensors.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Biological and chemical sensors based on graphene materials

TL;DR: This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection and emphasizes on the underlying detection (or signal transduction) mechanisms.
Journal ArticleDOI

3D Graphene–Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection

TL;DR: The 3D graphene/Co(3)O(4) composite was used as the monolithic free-standing electrode for supercapacitor application and for enzymeless electrochemical detection of glucose and it is demonstrated that it is capable of delivering high specific capacitance and detecting glucose with a ultrahigh sensitivity.
Journal ArticleDOI

Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications

TL;DR: This critical review, from the viewpoint of chemistry and materials, will cover recent significant advances in synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications of the "star-material" GN together with discussion on its major challenges and opportunities for future GN research.
Journal ArticleDOI

Recent advances in graphene-based biosensors

TL;DR: This review discusses the application of graphene for the detection of glucose, Cyt-c, NADH, Hb, cholesterol, AA, UA, DA, and H(2)O(2).
References
More filters
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Detection of individual gas molecules adsorbed on graphene

TL;DR: In this paper, it was shown that micrometre-size sensors made from graphene are capable of detecting individual events when a gas molecule attaches to or detaches from graphene's surface.
Journal ArticleDOI

Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition

TL;DR: The transparency, conductivity, and ambipolar transfer characteristics of the films suggest their potential as another materials candidate for electronics and opto-electronic applications.
Journal ArticleDOI

Detection of Individual Gas Molecules Absorbed on Graphene

TL;DR: In this paper, it was shown that micrometre-size sensors made from graphene are capable of detecting individual events when a gas molecule attaches to or detaches from graphenes surface.
Journal ArticleDOI

A Graphene Platform for Sensing Biomolecules

TL;DR: Graphene oxide (GO) is used as a platform for the sensitive and selective detection of DNA and proteins and the interaction of GO and dye-labeled single-stranded DNA leads to quenching of the dye fluorescence.
Related Papers (5)
Trending Questions (1)
How to invest in real graphene USA?

This study indicates that graphene is a promising candidate for the development of real-time nanoelectronic biosensors.