scispace - formally typeset
Open AccessJournal ArticleDOI

Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5.

TLDR
The crystal structure of this exotic non-equilibrium state of YBa2Cu3O6+x is reported, determined by femtosecond X-ray diffraction and ab initio density functional theory calculations, and the enhancement in the character of the in-plane electronic structure is likely to favour superconductivity.
Abstract
Femtosecond X-ray diffraction and ab initio density functional theory calculations are used to determine the crystal structure of YBa2Cu3O6.5 undergoing optically driven, nonlinear lattice excitation above the transition temperature of 52 kelvin, under which conditions the electronic structure of the material changes in such a way as to favour superconductivity. Andrea Cavalleri and colleagues use femtosecond X-ray diffraction measurements and ab initio density functional theory calculations to determine the crystal structure of YBa2Cu3O6+x undergoing optically driven, nonlinear lattice excitation at 100 kelvin. In this exotic non-equilibrium state, the electronic structure of the material changes in such a way as to favour superconductivity. The results reveal that in the driven state the superconducting planes are displaced closer and away from one another in a staggered manner, explaining how superconducting coupling can be enhanced or reduced, inside and between the bilayers. Terahertz-frequency optical pulses can resonantly drive selected vibrational modes in solids and deform their crystal structures1,2,3. In complex oxides, this method has been used to melt electronic order4,5,6, drive insulator-to-metal transitions7 and induce superconductivity8. Strikingly, coherent interlayer transport strongly reminiscent of superconductivity can be transiently induced up to room temperature (300 kelvin) in YBa2Cu3O6+x (refs 9, 10). Here we report the crystal structure of this exotic non-equilibrium state, determined by femtosecond X-ray diffraction and ab initio density functional theory calculations. We find that nonlinear lattice excitation in normal-state YBa2Cu3O6+x at above the transition temperature of 52 kelvin causes a simultaneous increase and decrease in the Cu–O2 intra-bilayer and, respectively, inter-bilayer distances, accompanied by anisotropic changes in the in-plane O–Cu–O bond buckling. Density functional theory calculations indicate that these motions cause drastic changes in the electronic structure. Among these, the enhancement in the character of the in-plane electronic structure is likely to favour superconductivity.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Towards properties on demand in quantum materials

TL;DR: Emerging strategies for selectively perturbing microscopic interaction parameters are described, which can be used to transform materials into a desired quantum state and outline a potential roadmap to an era of quantum phenomena on demand.
Journal ArticleDOI

Resonant X-Ray Scattering Studies of Charge Order in Cuprates

TL;DR: In this article, the authors review the recent resonant X-ray scattering breakthroughs in the copper oxide high-temperature superconductors, in particular regarding the phenomenon of charge order, a broken-symmetry state occurring when valence electrons self-organize into periodic structures.
Journal ArticleDOI

Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach

TL;DR: In the last two decades non-equilibrium spectroscopies have evolved from avant-garde studies to crucial tools for expanding our understanding of the physics of strongly correlated materials as mentioned in this paper.
Journal ArticleDOI

Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach

TL;DR: In this article, a review of the most recent achievements in the experimental and theoretical studies of the non-equilibrium electronic, optical, structural and magnetic properties of correlated materials is presented.
References
More filters
Journal ArticleDOI

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Journal ArticleDOI

Projector augmented-wave method

TL;DR: An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way and can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function.
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Journal ArticleDOI

First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures

TL;DR: In this article, the tetragonal to orthorhombic ferroelastic phase transition between rutile- and CaCl-type phonon modes at high pressures is studied using first-principles calculations and the Landau free-energy expansion.
Journal ArticleDOI

First-Principles Determination of the Soft Mode in Cubic ZrO 2

TL;DR: In this paper, a direct approach to calculate the phonon dispersion using an ab initio force constant method was introduced, where the authors derived the force constants from the Hellmann-Feynman forces induced by the displacement of an atom in the fcc supercell.
Related Papers (5)
Frequently Asked Questions (3)
Q1. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ?

Equilibrium Structure (Å) Displacements (pm) 0.3Å u Displacements (pm) 0.8Å u Displacements (pm) 1.2Å u Atom x y z x y z x y z x y z Y 1.922 1.936 5.863 0.111 0.000 0.000 0.769 0.000 0.000 1.835 0.000 0.000 Y 5.737 1.936 5.863 -0.111 0.000 0.000 -0.769 0.000 0.000 -1.835 0.000 0.000 Ba 1.861 1.936 2.224 0.159 0.000 0.027 0.142 0.000 0.040 0.167 0.000 0.227 Ba 5.797 1.936 9.501 -0.159 0.000 -0.027 -0.142 0.000 -0.040 -0.167 0.000 -0.227 Ba 1.861 1.936 9.501 0.159 0.000 -0.027 0.142 0.000 -0.040 0.167 0.000 -0.227 Ba 5.797 1.936 2.224 -0.159 0.000 0.027 -0.142 0.000 0.040 -0.167 0.000 0.227 Cu 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Cu 3.829 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Cu 0.000 0.000 4.227 0.000 0.000 -0.376 0.000 0.000 -0.799 0.000 0.000 -1.659 Cu 0.000 0.000 7.498 0.000 0.000 0.376 0.000 0.000 0.799 0.000 0.000 1.659 Cu 3.829 0.000 4.231 0.000 0.000 -1.032 0.000 0.000 -4.999 0.000 0.000 -11.451 Cu 3.829 0.000 7.494 0.000 0.000 1.032 0.000 0.000 4.999 0.000 0.000 11.451 O 0.000 1.936 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O 1.915 0.000 4.443 -0.055 0.000 0.066 -0.233 0.000 0.293 -1.024 0.000 1.144 O 5.743 0.000 7.282 0.055 0.000 -0.066 0.233 0.000 -0.293 1.024 0.000 -1.144 O 1.915 0.000 7.282 -0.055 0.000 -0.066 -0.233 0.000 -0.293 -1.024 0.000 -1.144 O 5.743 0.000 4.443 0.055 0.000 0.066 0.233 0.000 0.293 1.024 0.000 1.144 O 0.000 1.936 4.431 0.000 0.000 -0.015 0.000 0.000 -0.076 0.000 0.000 0.215 O 0.000 1.936 7.294 0.000 0.000 0.015 0.000 0.000 0.076 0.000 0.000 -0.215 O 3.829 1.936 4.440 0.000 0.000 0.127 0.000 0.000 0.490 0.000 0.000 1.690 O 3.829 1.936 7.285 0.000 0.000 -0.127 0.000 0.000 -0.490 0.000 0.000 -1.690 O 0.000 0.000 1.857 0.000 0.000 -0.057 0.000 0.000 0.199 0.000 0.000 -0.382 O 0.000 0.000 9.868 0.000 0.000 0.057 0.000 0.000 -0.199 0.000 0.000 0.382 O 3.829 0.000 1.758 0.000 0.000 1.335 0.000 0.000 7.355 0.000 0.000 12.342 O 3.829 0.000 9.967 0.000 0.000 -1.335 0.000 0.000 -7.355 0.000 0.000 -12.342 

0.8Å !!(purple)!and!1.2Å !!(green).!!!!1086420D OS (a.u .)-0.2 -0.1 0.0 0.1 0.2 Energy (eV)a 2.52.01.51.0D OS (a.u .)-0.2 -0.1 0.0 0.1 0.2 Energy (eV)b1086420D OS (a.u .)-0.2 -0.1 0.0 0.1 0.2 Energy (eV)c 2.52.01.51.0D OS (a.u .)-0.2 -0.1 0.0 0.1 0.2 Energy (eV)Equilibrium 0.30 B1u 0.80 B1u 1.20 B1udEmpty chain Cu Equilibrium 0.30 B1u 0.80 B1u 1.20 B1uIn-plane Cu empty chain Equilibrium 0.30 B1u 0.80 B1u 1.20 B1uFilled chain Cu Equilibrium 0.30 B1u 0.80 B1u 1.20 B1u27!!-Extended-Data-Table-1-|-Mode-displacements- Å ! -Energy!potential!minima!of!the!Ag! 

!Mode Displacement Ag14 -0.002 Ag15 0.031 Ag21 -0.038 Ag29 -0.023 Ag39 0.000 Ag52 0.007 Ag53 0.000 Ag61 -0.007 Ag63 0.007 Ag65 -0.001 Ag74 0.020 A° u28!!!!