scispace - formally typeset
Open AccessJournal ArticleDOI

Optical properties of two-dimensional honeycomb crystals graphene, silicene, germanene, and tinene from first principles

TLDR
In this article, the optical conductivity of 2D honeycomb crystals is computed using independent-quasiparticle approximation of the complex dielectric function for optical interband transitions.
Abstract
We compute the optical conductivity of 2D honeycomb crystals beyond the usual Dirac-cone approximation. The calculations are mainly based on the independent-quasiparticle approximation of the complex dielectric function for optical interband transitions. The full band structures are taken into account. In the case of silicene, the influence of excitonic effects is also studied. Special care is taken to derive converged spectra with respect to the number of k points in the Brillouin zone and the number of bands. In this way both the real and imaginary parts of the optical conductivity are correctly described for small and large frequencies. The results are applied to predict the optical properties reflection, transmission and absorption in a wide range of photon energies. They are discussed in the light of the available experimental data.

read more

Citations
More filters
Journal ArticleDOI

VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code

TL;DR: VASPKIT as mentioned in this paper is a command-line program that aims at providing a robust and user-friendly interface to perform high-throughput analysis of a variety of material properties from the raw data produced by the VASP code.
Journal ArticleDOI

Rise of silicene: A competitive 2D material

TL;DR: In this paper, a comprehensive review of all the important theoretical and experimental advances on silicene to date, from the basic theory of intrinsic properties, experimental synthesis and characterization, modulation of physical properties by modifications, and finally to device explorations is presented.
Journal ArticleDOI

Continuous germanene layer on Al(111).

TL;DR: Germanene, a 2D honeycomb structure similar to silicene, has been fabricated on Al(111) and first-principles calculations indicate that the Ge atoms accommodate in a very regular atomic configuration with a buckled conformation.
Journal ArticleDOI

Silicene, silicene derivatives, and their device applications.

TL;DR: The unique allotropic affinity of silicene with single-crystalline bulk silicon suggests a more direct path for the integration with or revolution to ubiquitous semiconductor technology.
Journal ArticleDOI

Recent progress on graphene-analogous 2D nanomaterials: Properties, modeling and applications

TL;DR: A comprehensive review of recent progress on the properties, modeling investigations and applications of graphene-analogous 2D nanomaterials is provided in this paper, where the main modeling techniques of ab initio calculation and molecular dynamics simulation for the theoretical study of GANOMs are introduced, followed by the detailed discussion on the critical findings for each material.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Journal ArticleDOI

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set

TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.
Book

Classical Electrodynamics

Journal ArticleDOI

Hybrid functionals based on a screened Coulomb potential

TL;DR: In this paper, a new hybrid density functional based on a screened Coulomb potential for the exchange interaction is proposed, which enables fast and accurate hybrid calculations, even of usually difficult metallic systems.
Related Papers (5)