scispace - formally typeset
Journal ArticleDOI

Pharmaceutical Co-Crystals

Reads0
Chats0
TLDR
This review addresses how crystal engineering has been applied to active pharmaceutical ingredients, API's, with emphasis upon how pharmaceutical co-crystals, a long known but little explored alternative to the four traditionally known forms of API, can be generated in a rational fashion.
About
This article is published in Journal of Pharmaceutical Sciences.The article was published on 2006-03-01. It has received 904 citations till now.

read more

Citations
More filters
Journal ArticleDOI

Pharmaceutical Cocrystals and Their Physicochemical Properties

TL;DR: The advances made over the last 10 years pertaining to physical and chemical property improvements through pharmaceutical cocrystalline materials will be highlighted and discussed to draw closer the fields of crystal engineering and pharmaceutical sciences.
Journal ArticleDOI

Strategies to Address Low Drug Solubility in Discovery and Development

TL;DR: The article provides an integrated and contemporary discussion of current approaches to solubility and dissolution enhancement but has been deliberately structured as a series of stand-alone sections to allow also directed access to a specific technology where required.
Journal ArticleDOI

Drug Solubility: Importance and Enhancement Techniques

TL;DR: Various techniques are used for the enhancement of the solubility of poorly soluble drugs which include physical and chemical modifications of drug and other methods like particle size reduction, crystal engineering, salt formation, solid dispersion, use of surfactant, complexation, and so forth.
Journal ArticleDOI

Polymorphs, Salts, and Cocrystals: What’s in a Name?

TL;DR: A discussion of the FDA guidance on regulatory classification of pharmaceutical cocrystals of active pharmaceutical ingredients (APIs) was held in Manesar near Delhi, India, from February 2-4, 2012 as mentioned in this paper.
References
More filters
Journal ArticleDOI

Functional porous coordination polymers.

TL;DR: The aim is to present the state of the art chemistry and physics of and in the micropores of porous coordination polymers, and the next generation of porous functions based on dynamic crystal transformations caused by guest molecules or physical stimuli.
MonographDOI

Supramolecular Chemistry: Concepts and Perspectives

TL;DR: From molecular to supramolescular chemistry: concepts and language of supramolecular chemistry, molecular recognition, information, complementarity molecular receptors - design principles and more.
Journal ArticleDOI

Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks.

TL;DR: Consideration of the geometric and chemical attributes of the SBUs and linkers leads to prediction of the framework topology, and in turn to the design and synthesis of a new class of porous materials with robust structures and high porosity.
Journal ArticleDOI

Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis

TL;DR: In this article, the authors show that crystal engineering is a new organic synthesis, and that rather than being only nominally relevant to organic chemistry, this subject is well within the mainstream, being surprisingly similar to traditional organic synthesis in concept.
Related Papers (5)