scispace - formally typeset
Journal ArticleDOI

Photocatalysis on TiO2 Surfaces - Principles, Mechanisms, and Selected Results

Amy Linsebigler, +2 more
- 01 May 1995 - 
- Vol. 95, Iss: 3, pp 735-758
TLDR
In this article, the authors focus on interfacial processes and summarize some of the operating principles of heterogeneous photocatalysis systems, including the electron transfer and energy transfer processes in photocatalytic reactions.
Abstract
In 1972, Fujishima and Honda discovered the photocatalytic splitting of water on TiO{sub 2} electrodes. This event marked the beginning of a new era in heterogeneous photocatalysis. Since then, research efforts in understanding the fundamental processes and in enhancing the photocatalytic efficiency of TiO{sub 2} have come from extensive research performed by chemists, physicists, and chemical engineers. Such studies are often related to energy renewal and energy storage. In recent years, applications to environmental cleanup have been one of the most active areas in heterogeneous photocatalysis. This is inspired by the potential application of TiO{sub 2}-based photocatalysts for the total destruction of organic compounds in polluted air and wastewaters. There exists a vast body of literature dealing with the electron transfer and energy transfer processes in photocatalytic reactions. A detailed description of these processes is beyond the scope of this review. Here, the authors tend to focus on interfacial processes and to summarize some of the operating principles of heterogeneous photocatalysis. In section 2, the authors first look at the electronic excitation processes in a molecule and in a semiconductor substrate. The electronic interaction between the adsorbate molecule and the catalyst substrate is discussed in terms of the catalyzed ormore » sensitized photoreactions. In section 3, thermal and photocatalytic studies on TiO{sub 2} are summarized with emphasis on the common characteristics and fundamental principles of the TiO{sub 2}-based photocatalysis systems. In section 4, they address the research effort in the electronic modification of the semiconductor catalysts and its effect on the photocatalytic efficiency. Several representative examples will be presented including the Schottky barrier formation and modification at metal-semiconductor interfaces. Some concluding remarks and future research directions will be given in the final section. 160 refs.« less

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Chemistry of one-dimensional metallic edge states in MoS2 nanoclusters

TL;DR: In this article, the authors report on extraordinary chemical properties associated with the edges of two-dimensional MoS2 nanoclusters, which are shown to be able to hydrogenate and break up thiophene (C4H4S) molecules.
Journal ArticleDOI

Inverted organic photovoltaic cells

TL;DR: In this review, recent progress in device structures, working mechanisms, functions and advances of each component layer as well their correlations with the efficiency and stability of inverted OPVs are reviewed and illustrated.
Journal ArticleDOI

Nanocrystalline TiO2 (anatase) for Li-ion batteries

TL;DR: In this article, the performance of nanocrystalline TiO 2 anatase was compared with commercial nano-TiO 2 anode in full cell configuration across LiCoO 2 cathode.
Journal ArticleDOI

Controlled switchable surface.

TL;DR: Various approaches to create a switchable surface and different types of external stimuli used to switch the surface properties are reviewed.
Journal ArticleDOI

Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: structure, kinetics and mechanism approach

TL;DR: Photatalytic degradation of pharmaceutical pollution is a suitable method that should be reviewed and studied to reduce the environmental impact of pharmaceuticals, without affecting the health danger gained through the intake of these medicines.
References
More filters
Book

Classical Electrodynamics

Book

Principles of Instrumental Analysis

TL;DR: In this article, the authors present an overview of the main components of optical atomic spectrometers and their application in the field of surface characterization by Spectroscopy and Microscopy.

Solid state

Book

Photocatalysis: Fundamentals and Applications

TL;DR: In this paper, the reader is first introduced to the meaning of photocatalysis and subsequently taken through the essentials of photochemistry towards bridging it to semiconductor materials, followed by thermodynamic and kinetic aspects.
Related Papers (5)