scispace - formally typeset
Journal ArticleDOI

Photocatalysis on TiO2 Surfaces - Principles, Mechanisms, and Selected Results

Amy Linsebigler, +2 more
- 01 May 1995 - 
- Vol. 95, Iss: 3, pp 735-758
TLDR
In this article, the authors focus on interfacial processes and summarize some of the operating principles of heterogeneous photocatalysis systems, including the electron transfer and energy transfer processes in photocatalytic reactions.
Abstract
In 1972, Fujishima and Honda discovered the photocatalytic splitting of water on TiO{sub 2} electrodes. This event marked the beginning of a new era in heterogeneous photocatalysis. Since then, research efforts in understanding the fundamental processes and in enhancing the photocatalytic efficiency of TiO{sub 2} have come from extensive research performed by chemists, physicists, and chemical engineers. Such studies are often related to energy renewal and energy storage. In recent years, applications to environmental cleanup have been one of the most active areas in heterogeneous photocatalysis. This is inspired by the potential application of TiO{sub 2}-based photocatalysts for the total destruction of organic compounds in polluted air and wastewaters. There exists a vast body of literature dealing with the electron transfer and energy transfer processes in photocatalytic reactions. A detailed description of these processes is beyond the scope of this review. Here, the authors tend to focus on interfacial processes and to summarize some of the operating principles of heterogeneous photocatalysis. In section 2, the authors first look at the electronic excitation processes in a molecule and in a semiconductor substrate. The electronic interaction between the adsorbate molecule and the catalyst substrate is discussed in terms of the catalyzed ormore » sensitized photoreactions. In section 3, thermal and photocatalytic studies on TiO{sub 2} are summarized with emphasis on the common characteristics and fundamental principles of the TiO{sub 2}-based photocatalysis systems. In section 4, they address the research effort in the electronic modification of the semiconductor catalysts and its effect on the photocatalytic efficiency. Several representative examples will be presented including the Schottky barrier formation and modification at metal-semiconductor interfaces. Some concluding remarks and future research directions will be given in the final section. 160 refs.« less

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Water Splitting on Composite Plasmonic-Metal/Semiconductor Photoelectrodes: Evidence for Selective Plasmon-Induced Formation of Charge Carriers near the Semiconductor Surface

TL;DR: It is demonstrated that this issue can be alleviated significantly by combining a semiconductor photocatalyst with tailored plasmonic-metal nanostructures, and the interaction of localized electric fields with the neighboring semiconductor allows for the selective formation of electron/hole (e(-)/h(+)) pairs in the near-surface region of the semiconductor.
Journal ArticleDOI

Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry

TL;DR: In this article, the properties of anodically formed semiconducting TiO2 nanotubes as well as nanowire arrays as electrodes for oxidative photoelectrochemistry were discussed.
Journal ArticleDOI

Oxide Defect Engineering Enables to Couple Solar Energy into Oxygen Activation

TL;DR: It is reported that defect engineering on oxide catalyst can serve as a versatile approach to bridge light harvesting with surface reactions by ensuring species chemisorption.
Journal ArticleDOI

An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU.

TL;DR: This review summarizes the data published in the last decade regarding the application of advanced oxidation processes (AOPs) to treat priority compounds and certain other pollutants defined in this Directive, excluding the inorganic species.
References
More filters
Book

Classical Electrodynamics

Book

Principles of Instrumental Analysis

TL;DR: In this article, the authors present an overview of the main components of optical atomic spectrometers and their application in the field of surface characterization by Spectroscopy and Microscopy.

Solid state

Book

Photocatalysis: Fundamentals and Applications

TL;DR: In this paper, the reader is first introduced to the meaning of photocatalysis and subsequently taken through the essentials of photochemistry towards bridging it to semiconductor materials, followed by thermodynamic and kinetic aspects.
Related Papers (5)