scispace - formally typeset
Journal ArticleDOI

Photocatalysis on TiO2 Surfaces - Principles, Mechanisms, and Selected Results

Amy Linsebigler, +2 more
- 01 May 1995 - 
- Vol. 95, Iss: 3, pp 735-758
TLDR
In this article, the authors focus on interfacial processes and summarize some of the operating principles of heterogeneous photocatalysis systems, including the electron transfer and energy transfer processes in photocatalytic reactions.
Abstract
In 1972, Fujishima and Honda discovered the photocatalytic splitting of water on TiO{sub 2} electrodes. This event marked the beginning of a new era in heterogeneous photocatalysis. Since then, research efforts in understanding the fundamental processes and in enhancing the photocatalytic efficiency of TiO{sub 2} have come from extensive research performed by chemists, physicists, and chemical engineers. Such studies are often related to energy renewal and energy storage. In recent years, applications to environmental cleanup have been one of the most active areas in heterogeneous photocatalysis. This is inspired by the potential application of TiO{sub 2}-based photocatalysts for the total destruction of organic compounds in polluted air and wastewaters. There exists a vast body of literature dealing with the electron transfer and energy transfer processes in photocatalytic reactions. A detailed description of these processes is beyond the scope of this review. Here, the authors tend to focus on interfacial processes and to summarize some of the operating principles of heterogeneous photocatalysis. In section 2, the authors first look at the electronic excitation processes in a molecule and in a semiconductor substrate. The electronic interaction between the adsorbate molecule and the catalyst substrate is discussed in terms of the catalyzed ormore » sensitized photoreactions. In section 3, thermal and photocatalytic studies on TiO{sub 2} are summarized with emphasis on the common characteristics and fundamental principles of the TiO{sub 2}-based photocatalysis systems. In section 4, they address the research effort in the electronic modification of the semiconductor catalysts and its effect on the photocatalytic efficiency. Several representative examples will be presented including the Schottky barrier formation and modification at metal-semiconductor interfaces. Some concluding remarks and future research directions will be given in the final section. 160 refs.« less

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The teraton challenge. A review of fixation and transformation of carbon dioxide

TL;DR: In this paper, the authors present a review of CO2, its synthetic reactions and their possible role in future CO2 mitigation schemes that have to match the scale of man-made CO2 in the atmosphere, which rapidly approaches 1 teraton.
Journal ArticleDOI

A surface science perspective on TiO2 photocatalysis

TL;DR: The field of surface science provides a unique approach to understand bulk, surface and interfacial phenomena occurring during TiO2 photocatalysis as mentioned in this paper, including photon absorption, charge transport and trapping, electron transfer dynamics, adsorbed state, mechanisms, poisons and promoters, and phase and form.
Journal ArticleDOI

Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4

TL;DR: The homogeneous substitution of sulfur for lattice nitrogen and a concomitant quantum confinement effect are identified as the cause of this unique electronic structure and the excellent photoreactivity of C(3)N(4-x)S(x), which may shed light on general doping strategies for designing potentially efficient photocatalysts.
Journal ArticleDOI

Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as Cocatalyst under visible light irradiation.

TL;DR: This communication presents the recent results that the activity of photocatalytic H2 production can be significantly enhanced when a small amount of MoS2 is loaded on CdS as cocatalyst.
Journal ArticleDOI

Review on Modified TiO2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics

TL;DR: This review encompasses several advancements made in these aspects of titania, and also some of the new physical insights related to the charge transfer events like charge carrier generation, trapping, detrapping, and their transfer to surface are discussed for each strategy of the modified titania to support the conclusions derived.
References
More filters
Book

Classical Electrodynamics

Book

Principles of Instrumental Analysis

TL;DR: In this article, the authors present an overview of the main components of optical atomic spectrometers and their application in the field of surface characterization by Spectroscopy and Microscopy.

Solid state

Book

Photocatalysis: Fundamentals and Applications

TL;DR: In this paper, the reader is first introduced to the meaning of photocatalysis and subsequently taken through the essentials of photochemistry towards bridging it to semiconductor materials, followed by thermodynamic and kinetic aspects.
Related Papers (5)