scispace - formally typeset
Journal ArticleDOI

Photocatalysis on TiO2 Surfaces - Principles, Mechanisms, and Selected Results

Amy Linsebigler, +2 more
- 01 May 1995 - 
- Vol. 95, Iss: 3, pp 735-758
TLDR
In this article, the authors focus on interfacial processes and summarize some of the operating principles of heterogeneous photocatalysis systems, including the electron transfer and energy transfer processes in photocatalytic reactions.
Abstract
In 1972, Fujishima and Honda discovered the photocatalytic splitting of water on TiO{sub 2} electrodes. This event marked the beginning of a new era in heterogeneous photocatalysis. Since then, research efforts in understanding the fundamental processes and in enhancing the photocatalytic efficiency of TiO{sub 2} have come from extensive research performed by chemists, physicists, and chemical engineers. Such studies are often related to energy renewal and energy storage. In recent years, applications to environmental cleanup have been one of the most active areas in heterogeneous photocatalysis. This is inspired by the potential application of TiO{sub 2}-based photocatalysts for the total destruction of organic compounds in polluted air and wastewaters. There exists a vast body of literature dealing with the electron transfer and energy transfer processes in photocatalytic reactions. A detailed description of these processes is beyond the scope of this review. Here, the authors tend to focus on interfacial processes and to summarize some of the operating principles of heterogeneous photocatalysis. In section 2, the authors first look at the electronic excitation processes in a molecule and in a semiconductor substrate. The electronic interaction between the adsorbate molecule and the catalyst substrate is discussed in terms of the catalyzed ormore » sensitized photoreactions. In section 3, thermal and photocatalytic studies on TiO{sub 2} are summarized with emphasis on the common characteristics and fundamental principles of the TiO{sub 2}-based photocatalysis systems. In section 4, they address the research effort in the electronic modification of the semiconductor catalysts and its effect on the photocatalytic efficiency. Several representative examples will be presented including the Schottky barrier formation and modification at metal-semiconductor interfaces. Some concluding remarks and future research directions will be given in the final section. 160 refs.« less

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Recent progress in biomedical applications of titanium dioxide

TL;DR: A critical review of recent advances in the biomedical applications of TiO2, which includes the photodynamic therapy for cancer treatment, drug delivery systems, cell imaging, biosensors for biological assay, and genetic engineering are presented.
Journal ArticleDOI

Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: Can we win against pathogenic viruses?

TL;DR: Given the appealing merits of heterogeneous photocatalytic disinfection of viruses, there is no doubt that this technology will be an impressively active research field and a source of comfort and confidence to humans in battling against viruses.
Journal ArticleDOI

Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction

TL;DR: In this article, a modified sol-gel process was used to synthesize copper-loaded titania (Cu/TiO2) catalysts for CO 2 photocatalytic reduction and the yield of methanol was evaluated.
Journal ArticleDOI

The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays.

TL;DR: Metal-containing nanomaterials have the potential to be used in dentistry for infection control, but little is known about their antibacterial properties, and Ag NPs were the best disinfectant and performed better than chlorhexidine.
Journal ArticleDOI

Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite

TL;DR: Pt modified TiO2 loaded on natural zeolites (Pt-TiO2/zeolites) was prepared by sol-gel technique and photoreductive deposition method.
References
More filters
Book

Classical Electrodynamics

Book

Principles of Instrumental Analysis

TL;DR: In this article, the authors present an overview of the main components of optical atomic spectrometers and their application in the field of surface characterization by Spectroscopy and Microscopy.

Solid state

Book

Photocatalysis: Fundamentals and Applications

TL;DR: In this paper, the reader is first introduced to the meaning of photocatalysis and subsequently taken through the essentials of photochemistry towards bridging it to semiconductor materials, followed by thermodynamic and kinetic aspects.
Related Papers (5)