scispace - formally typeset
Journal ArticleDOI

Photocatalysis on TiO2 Surfaces - Principles, Mechanisms, and Selected Results

Amy Linsebigler, +2 more
- 01 May 1995 - 
- Vol. 95, Iss: 3, pp 735-758
TLDR
In this article, the authors focus on interfacial processes and summarize some of the operating principles of heterogeneous photocatalysis systems, including the electron transfer and energy transfer processes in photocatalytic reactions.
Abstract
In 1972, Fujishima and Honda discovered the photocatalytic splitting of water on TiO{sub 2} electrodes. This event marked the beginning of a new era in heterogeneous photocatalysis. Since then, research efforts in understanding the fundamental processes and in enhancing the photocatalytic efficiency of TiO{sub 2} have come from extensive research performed by chemists, physicists, and chemical engineers. Such studies are often related to energy renewal and energy storage. In recent years, applications to environmental cleanup have been one of the most active areas in heterogeneous photocatalysis. This is inspired by the potential application of TiO{sub 2}-based photocatalysts for the total destruction of organic compounds in polluted air and wastewaters. There exists a vast body of literature dealing with the electron transfer and energy transfer processes in photocatalytic reactions. A detailed description of these processes is beyond the scope of this review. Here, the authors tend to focus on interfacial processes and to summarize some of the operating principles of heterogeneous photocatalysis. In section 2, the authors first look at the electronic excitation processes in a molecule and in a semiconductor substrate. The electronic interaction between the adsorbate molecule and the catalyst substrate is discussed in terms of the catalyzed ormore » sensitized photoreactions. In section 3, thermal and photocatalytic studies on TiO{sub 2} are summarized with emphasis on the common characteristics and fundamental principles of the TiO{sub 2}-based photocatalysis systems. In section 4, they address the research effort in the electronic modification of the semiconductor catalysts and its effect on the photocatalytic efficiency. Several representative examples will be presented including the Schottky barrier formation and modification at metal-semiconductor interfaces. Some concluding remarks and future research directions will be given in the final section. 160 refs.« less

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Titania-based photocatalysts—crystal growth, doping and heterostructuring

TL;DR: In this paper, a comprehensive review of titania (TiO2)-based semiconductor photocatalysts is presented, including crystal growth, doping, and heterostructuring.
Journal ArticleDOI

Direct Z-scheme photocatalysts: Principles, synthesis, and applications

TL;DR: In this article, a review concisely compiles the recent progress in the fabrication, modification, and major applications of the direct Z-scheme photocatalysts; the latter include water splitting, carbon dioxide reduction, degradation of pollutants, and biohazard disinfection.
Journal ArticleDOI

Phase-pure TiO 2 nanoparticles: anatase, brookite and rutile

TL;DR: It is proposed that anatase formation is dominated by surface energy effects, and that rutile and brookite formation follows a dissolution-precipitation mechanism, where chains of sixfold-coordinated titanium complexes arrange into different crystal structures depending on the reactant chemistry.
Journal ArticleDOI

Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4

TL;DR: In this article, a ZnO photocatalyst was hybridized with graphite-like C3N4 via a monolayer-dispersed method, and the photocurrent of C 3N4/ZnO was enhanced by 5 times under UV irradiation and a photocurrent under visible light irradiation.
Journal ArticleDOI

High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels

TL;DR: Efficient solar conversion of carbon dioxide and water vapor to methane and other hydrocarbons is achieved using nitrogen-doped titania nanotube arrays, with a wall thickness low enough to facilitate effective carrier transfer to the adsorbing species, surface-loaded with nanodimensional islands of cocatalysts platinum and/or copper.
References
More filters
Book

Classical Electrodynamics

Book

Principles of Instrumental Analysis

TL;DR: In this article, the authors present an overview of the main components of optical atomic spectrometers and their application in the field of surface characterization by Spectroscopy and Microscopy.

Solid state

Book

Photocatalysis: Fundamentals and Applications

TL;DR: In this paper, the reader is first introduced to the meaning of photocatalysis and subsequently taken through the essentials of photochemistry towards bridging it to semiconductor materials, followed by thermodynamic and kinetic aspects.
Related Papers (5)