scispace - formally typeset
Journal ArticleDOI

Photocatalysis on TiO2 Surfaces - Principles, Mechanisms, and Selected Results

Amy Linsebigler, +2 more
- 01 May 1995 - 
- Vol. 95, Iss: 3, pp 735-758
TLDR
In this article, the authors focus on interfacial processes and summarize some of the operating principles of heterogeneous photocatalysis systems, including the electron transfer and energy transfer processes in photocatalytic reactions.
Abstract
In 1972, Fujishima and Honda discovered the photocatalytic splitting of water on TiO{sub 2} electrodes. This event marked the beginning of a new era in heterogeneous photocatalysis. Since then, research efforts in understanding the fundamental processes and in enhancing the photocatalytic efficiency of TiO{sub 2} have come from extensive research performed by chemists, physicists, and chemical engineers. Such studies are often related to energy renewal and energy storage. In recent years, applications to environmental cleanup have been one of the most active areas in heterogeneous photocatalysis. This is inspired by the potential application of TiO{sub 2}-based photocatalysts for the total destruction of organic compounds in polluted air and wastewaters. There exists a vast body of literature dealing with the electron transfer and energy transfer processes in photocatalytic reactions. A detailed description of these processes is beyond the scope of this review. Here, the authors tend to focus on interfacial processes and to summarize some of the operating principles of heterogeneous photocatalysis. In section 2, the authors first look at the electronic excitation processes in a molecule and in a semiconductor substrate. The electronic interaction between the adsorbate molecule and the catalyst substrate is discussed in terms of the catalyzed ormore » sensitized photoreactions. In section 3, thermal and photocatalytic studies on TiO{sub 2} are summarized with emphasis on the common characteristics and fundamental principles of the TiO{sub 2}-based photocatalysis systems. In section 4, they address the research effort in the electronic modification of the semiconductor catalysts and its effect on the photocatalytic efficiency. Several representative examples will be presented including the Schottky barrier formation and modification at metal-semiconductor interfaces. Some concluding remarks and future research directions will be given in the final section. 160 refs.« less

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Visible‐Light‐Induced Selective Photocatalytic Aerobic Oxidation of Amines into Imines on TiO2

TL;DR: This report can be viewed as a prototypical system for the activation of C-H bonds adjacent to heteroatoms such as N, O, and S atoms, and oxofuctionalization with air or dioxygen as the terminal oxidant under visible-light irradiation using TiO(2) as the photocatalyst.
Journal ArticleDOI

TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels

TL;DR: In this article, a review on the design and fabrication of TiO2-based heterojunction photocatalysts and their recent progresses into developing solar fuels via the photocatalysis reduction of CO2.
Journal ArticleDOI

Recent advances in syntheses, properties and applications of TiO2 nanostructures

TL;DR: In this article, a review describes the advances in the syntheses, properties and applications of TiO2 nano structures, and efforts are also made to discuss the working mechanism and future challenges and perspectives.
Journal ArticleDOI

Inorganic materials for photocatalytic water disinfection

TL;DR: In this paper, a review of the recent progress in the fabrication of inorganic nanomaterials for photocatalytic water disinfection is presented, as well as the antimicrobial mechanisms are discussed.
Journal ArticleDOI

Anatase TiO2 nanoparticles on rutile TiO2 nanorods: a heterogeneous nanostructure via layer-by-layer assembly.

TL;DR: It was found that, with the optimum preparation conditions, the heterogeneous nanostructures showed better photocatalytic activity for decomposing gaseous acetaldehyde than either the original anatase nanoparticles or the rutile nanorods.
References
More filters
Book

Classical Electrodynamics

Book

Principles of Instrumental Analysis

TL;DR: In this article, the authors present an overview of the main components of optical atomic spectrometers and their application in the field of surface characterization by Spectroscopy and Microscopy.

Solid state

Book

Photocatalysis: Fundamentals and Applications

TL;DR: In this paper, the reader is first introduced to the meaning of photocatalysis and subsequently taken through the essentials of photochemistry towards bridging it to semiconductor materials, followed by thermodynamic and kinetic aspects.
Related Papers (5)