Photochemical cleavage of water by photocatalysis
TL;DR: In this article, a bifunctional redox catalyst composed of RuO2 and Pt co-supported on colloidal TiO2 particles is used for water decomposition by visible light illumination.
Abstract: A bifunctional redox catalyst, composed of Pt and RuO2 co-deposited on a colloidal TiO2 carrier, is a highly potent mediator for water decomposition by visible light1. The system contains apart from the sensitizer (Ru(bipy)2+3) an electron relay—methylviologen. The latter is reduced on light excitation, and the photoreaction is coupled with catalytic steps2 generating H2 and O2 from water. To rationalize the surprisingly high efficiency of this photoredox system, we proposed a mechanism involving species adsorbed at the TiO2 surface. This led us to explore sensitizers which through suitable functionalization show an enhanced affinity for adsorption at the particle–water interface. We describe here the performance of electron relay-free systems capable of efficiently decomposing water into H2 and O2 under visible light illumination. A bifunctional redox catalyst composed of RuO2 and Pt co-supported on colloidal TiO2 particles is used. The only other component present is a sensitizer. Amphiphilic surfactant derivatives of Ru(bipy)2+3 exhibit extremely high activity in promoting the water cleavage process. Adsorption of the sensitizer at the TiO2 particle–water interface and electron ejection into the TiO2 conduction band are evoked to explain the observations. Exposure to UV radiation leads to efficient water cleavage in the absence of sensitizer.
Citations
More filters
TL;DR: It is shown that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor.
Abstract: The production of hydrogen from water using a catalyst and solar energy is an ideal future energy source, independent of fossil reserves. For an economical use of water and solar energy, catalysts that are sufficiently efficient, stable, inexpensive and capable of harvesting light are required. Here, we show that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor. Contrary to other conducting polymer semiconductors, carbon nitride is chemically and thermally stable and does not rely on complicated device manufacturing. The results represent an important first step towards photosynthesis in general where artificial conjugated polymer semiconductors can be used as energy transducers.
9,751 citations
TL;DR: Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting and its Applications d0 Metal Oxide Photocatalysts 6518 4.4.1.
Abstract: 2.3. Evaluation of Photocatalytic Water Splitting 6507 2.3.1. Photocatalytic Activity 6507 2.3.2. Photocatalytic Stability 6507 3. UV-Active Photocatalysts for Water Splitting 6507 3.1. d0 Metal Oxide Photocatalyts 6507 3.1.1. Ti-, Zr-Based Oxides 6507 3.1.2. Nb-, Ta-Based Oxides 6514 3.1.3. W-, Mo-Based Oxides 6517 3.1.4. Other d0 Metal Oxides 6518 3.2. d10 Metal Oxide Photocatalyts 6518 3.3. f0 Metal Oxide Photocatalysts 6518 3.4. Nonoxide Photocatalysts 6518 4. Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting 6519
6,332 citations
TL;DR: This review for the first time summarizes all the developed earth-abundant cocatalysts for photocatalytic H2- and O2-production half reactions as well as overall water splitting.
Abstract: Photocatalytic water splitting represents a promising strategy for clean, low-cost, and environmental-friendly production of H2 by utilizing solar energy. There are three crucial steps for the photocatalytic water splitting reaction: solar light harvesting, charge separation and transportation, and the catalytic H2 and O2 evolution reactions. While significant achievement has been made in optimizing the first two steps in the photocatalytic process, much less efforts have been put into improving the efficiency of the third step, which demands the utilization of cocatalysts. To date, cocatalysts based on rare and expensive noble metals are still required for achieving reasonable activity in most semiconductor-based photocatalytic systems, which seriously restricts their large-scale application. Therefore, seeking cheap, earth-abundant and high-performance cocatalysts is indispensable to achieve cost-effective and highly efficient photocatalytic water splitting. This review for the first time summarizes all the developed earth-abundant cocatalysts for photocatalytic H2- and O2-production half reactions as well as overall water splitting. The roles and functional mechanism of the cocatalysts are discussed in detail. Finally, this review is concluded with a summary, and remarks on some challenges and perspectives in this emerging area of research.
1,990 citations
TL;DR: Generations Yi Ma,† Xiuli Wang,† Yushuai Jia,† Xiaobo Chen,‡ Hongxian Han,*,† and Can Li*,†
Abstract: Generations Yi Ma,† Xiuli Wang,† Yushuai Jia,† Xiaobo Chen,‡ Hongxian Han,*,† and Can Li*,† †State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China ‡Department of Chemistry, College of Arts and Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110, United States
1,990 citations
TL;DR: A review of the known inorganic catalysts with a focus on structure-activity relationships is given in this article, where the first water splitting system based on TiO2 and Pt was proposed by Fujishima and Honda in 1972.
Abstract: Photochemical splitting of water into H2 and O2 using solar energy is a process of great economic and environmental interest. Since the discovery of the first water splitting system based on TiO2 and Pt in 1972 by Fujishima and Honda, over 130 inorganic materials have been discovered as catalysts for this reaction. This review discusses the known inorganic catalysts with a focus on structure–activity relationships.
1,977 citations
References
More filters
TL;DR: Water photolysis is investigated by exploiting the fact that water is transparent to visible light and cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm.
Abstract: ALTHOUGH the possibility of water photolysis has been investigated by many workers, a useful method has only now been developed. Because water is transparent to visible light it cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm (ref. 1).
27,819 citations
TL;DR: The photolysis of chemisorbed water on incompletely outgassed TiO/sub 2/ powder yields H 2 and O 2 in the molar ratio of 2 : 1 if conducted under argon in the presence of molecular nitrogen as mentioned in this paper.
Abstract: The photolysis of chemisorbed water on incompletely outgassed TiO/sub 2/ powder yields H/sub 2/ and O/sub 2/ in the molar ratio of 2 : 1 if conducted under argon In the presence of molecular nitrogen, O/sub 2/ is still formed but the evolution of H/sub 2/ is inhibited as chemisorbed nitrogen is reduced to NH/sub 3/ and traces of N/sub 2/H/sub 4/ according to N/sub 2/ + 3H/sub 2/O + nhv yields 2NH/sub 3/ + 150/sub 2/ and N/sub 2/ + 2H/sub 2/O + mhv yields N/sub 2/H/sub 4/ + O/sub 2/ Iron doping enhances the photocatalytic reactivity of rutile and provides prototypes of solar cells for photochemical ammonia synthesis from N/sub 2/ and H/sub 2/O
817 citations
TL;DR: In this article, the authors demonstrate that the decomposition of water is catalytic at 23°C when a platinized, powdered titanium dioxide catalyst, illuminated with band-gap radiation, is used.
Abstract: Experiments demonstrate that the decomposition of water is catalytic at 23°C when a platinized, powdered titanium dioxide catalyst, illuminated with band-gap radiation, is used.
436 citations
TL;DR: The photodecomposition of water vapour proceeds steadily for more than 100 h on NiO-SrTiO3 powder and stops immediately when the water vapor is removed.
Abstract: The photodecomposition of water vapour proceeds steadily for more than 100 h on NiO–SrTiO3 powder and stops immediately when the water vapour is removed.
343 citations
TL;DR: In this article, the first observations of the dynamics of intervention of the Pt particles in the redox events are presented, and a centrifuged colloidal Pt catalyst stabilised by polyvinyl alcohol showed exceptionally high activity in promoting hydrogen evolution from water via 2MV+ + H2O→PtH2 + 2OH− + 2 MV2+ where MV+ stands for reduced methylviologen.
Abstract: Noble metal dispersions are suitable for mediating light-induced hydrogen1–5 and oxygen6–8 evolution from water. We report here a dramatic improvement of the hydrogen production rate when very finely dispersed platinum is used as a mediator in reaction (1). The first observations of the dynamics of intervention of the Pt particles in the redox events are presented. A centrifuged colloidal Pt catalyst stabilised by polyvinyl alcohol showed exceptionally high activity in promoting hydrogen evolution from water via 2MV+ + H2O→PtH2 + 2OH− + 2MV2+ (1) where MV+ stands for reduced methylviologen. The latter is produced photochemically in aqueous solution containing Ru(bipy)32+ as a sensitiser and EDTA as an electron donor. At 10−3 M Pt the reoxidation of MV+ requires only 15 µs and leads to quantitative formation of H2.
228 citations