scispace - formally typeset
Journal ArticleDOI

Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins

Reads0
Chats0
TLDR
The aim of this review will be to provide a general overview of TDP‐43 and FUS/TLS proteins and to highlight their physiological functions.
Abstract
The multiple roles played by RNA binding proteins in neurodegeneration have become apparent following the discovery of TAR DNA binding protein 43 kDa (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) involvement in amyotrophic lateral sclerosis and frontotemporal lobar dementia. In these two diseases, the majority of patients display the presence of aggregated forms of one of these proteins in their brains. The study of their functional properties currently represents a very promising target for developing the effective therapeutic options that are still lacking. This aim, however, must be preceded by an accurate evaluation of TDP-43 and FUS/TLS biological functions, both in physiological and disease conditions. Recent findings have uncovered several aspects of RNA metabolism that can be affected by misregulation of these two proteins. Progress has also been made in starting to understand how the aggregation of these proteins occurs and spreads from cell to cell. The aim of this review will be to provide a general overview of TDP-43 and FUS/TLS proteins and to highlight their physiological functions. At present, the emerging picture is that TDP-43 and FUS/TLS control several aspects of an mRNA's life, but they can also participate in DNA repair processes and in non-coding RNA metabolism. Although their regulatory activities are similar, they regulate mainly distinct RNA targets and show different pathogenetic mechanisms in amyotrophic lateral sclerosis/frontotemporal lobar dementia diseases. The identification of key events in these processes represents today the best chance of finding targetable options for therapeutic approaches that might actually make a difference at the clinical level. The two major RNA Binding Proteins involved in Amyotrophic Lateral Sclerosisi and Frontotemporal Dementia are TDP-43 and FUST/TLS. Both proteins are involved in regulating all aspects of RNA and RNA life cycle within neurons, from transcription, processing, and transport/stability to the formation of cytoplasmic and nuclear stress granules. For this reason, the aberrant aggregation of these factors during disease can impair multiple RNA metabolic pathways and eventually lead to neuronal death/inactivation. The purpose of this review is to provide an up-to-date perspective on what we know about this issue at the molecular level. This article is part of the Frontotemporal Dementia special issue.

read more

Citations
More filters
Journal ArticleDOI

Role and therapeutic potential of liquid-liquid phase separation in amyotrophic lateral sclerosis.

TL;DR: The current state of knowledge on ALS-related gene products associated with a proteinopathy are reviewed and their status as LLPS proteins are discussed and the therapeutic potential of targeting LLPS for treating ALS is highlighted.
Book ChapterDOI

Mechanisms Associated with TDP-43 Neurotoxicity in ALS/FTLD

TL;DR: The discovery of TDP-43 as a major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) was first made in 2006, and the significance of which is still in the early stages of exploration.
Journal ArticleDOI

Expression of HERV Genes as Possible Biomarker and Target in Neurodegenerative Diseases.

TL;DR: Human endogenous retroviruses are genetic parasites, in-between genetics and environment, and the development of animal models, and disease modulation in humans, by anti-HERV therapeutic antibody and clinical trials are in progress.
Journal ArticleDOI

The role of DNA damage response in amyotrophic lateral sclerosis.

TL;DR: This review of recent studies indicating a direct link between DNA damage response and ALS highlights the need for mechanistic understanding of the role genomic instability is playing in ALS disease pathophysiology.
Journal ArticleDOI

Role of Oxidative Stress in the Pathogenesis of Amyotrophic Lateral Sclerosis: Antioxidant Metalloenzymes and Therapeutic Strategies.

TL;DR: In this article, the authors focus on the mechanisms through which these enzymes are involved in the antioxidant response to oxidative stress and thus the pathogenesis of ALS and their potential as therapeutic targets.
References
More filters
Journal ArticleDOI

The Microprocessor complex mediates the genesis of microRNAs

TL;DR: In vivo knock-down and in vitro reconstitution studies revealed that both components of this smaller complex, termed Microprocessor, are necessary and sufficient in mediating the genesis of miRNAs from the primary miRNA transcript.
Related Papers (5)