scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Neurochemistry in 2016"


Journal ArticleDOI
TL;DR: The purpose of this review is to distinguish different variations of neuro inflammation in a context‐specific manner and detail both positive and negative aspects of neuroinflammatory processes.
Abstract: There is significant interest in understanding inflammatory responses within the brain and spinal cord. Inflammatory responses that are centralized within the brain and spinal cord are generally referred to as 'neuroinflammatory'. Aspects of neuroinflammation vary within the context of disease, injury, infection, or stress. The context, course, and duration of these inflammatory responses are all critical aspects in the understanding of these processes and their corresponding physiological, biochemical, and behavioral consequences. Microglia, innate immune cells of the CNS, play key roles in mediating these neuroinflammatory responses. Because the connotation of neuroinflammation is inherently negative and maladaptive, the majority of research focus is on the pathological aspects of neuroinflammation. There are, however, several degrees of neuroinflammatory responses, some of which are positive. In many circumstances including CNS injury, there is a balance of inflammatory and intrinsic repair processes that influences functional recovery. In addition, there are several other examples where communication between the brain and immune system involves neuroinflammatory processes that are beneficial and adaptive. The purpose of this review is to distinguish different variations of neuroinflammation in a context-specific manner and detail both positive and negative aspects of neuroinflammatory processes. In this review, we will use brain and spinal cord injury, stress, aging, and other inflammatory events to illustrate the potential harm and benefits inherent to neuroinflammation. Context, course, and duration of the inflammation are highly important to the interpretation of these events, and we aim to provide insight into this by detailing several commonly studied insults. This article is part of the 60th anniversary supplemental issue.

787 citations


Journal ArticleDOI
TL;DR: In this review, the clinical features of Parkinson's disease, both motor and non‐motor, are described in the context of the progression of the disease.
Abstract: In this review, the clinical features of Parkinson's disease, both motor and non-motor, are described in the context of the progression of the disease. Also briefly discussed are the major treatment strategies and their complications. Parkinson's disease is a slowly progressing neurodegenerative disorder, causing impaired motor function with slow movements, tremor and gait and balance disturbances. A variety of non-motor symptoms are common in Parkinson's disease. They include disturbed autonomic function with orthostatic hypotension, constipation and urinary disturbances, a variety of sleep disorders and a spectrum of neuropsychiatric symptoms. This article describes the different clinical symptoms that may occur and the clinical course of the disease. This article is part of a special issue on Parkinson disease.

764 citations


Journal ArticleDOI
TL;DR: A detailed overview of the mechanisms that can cause mitochondrial dysfunction in PD is provided and new signaling pathways such as the retromer‐trafficking pathway and its implication in the disease are brought to the forefront.
Abstract: Parkinson's disease (PD) is the second most common neurodegenerative disease. About 2% of the population above the age of 60 is affected by the disease. The pathological hallmarks of the disease include the loss of dopaminergic neurons in the substantia nigra and the presence of Lewy bodies that are made of α-synuclein. Several theories have been suggested for the pathogenesis of PD, of which mitochondrial dysfunction plays a pivotal role in both sporadic and familial forms of the disease. Dysfunction of the mitochondria that is caused by bioenergetic defects, mutations in mitochondrial DNA, nuclear DNA gene mutations linked to mitochondria, and changes in dynamics of the mitochondria such fusion or fission, changes in size and morphology, alterations in trafficking or transport, altered movement of mitochondria, impairment of transcription, and the presence of mutated proteins associated with mitochondria are implicated in PD. In this review, we provide a detailed overview of the mechanisms that can cause mitochondrial dysfunction in PD. We bring to the forefront, new signaling pathways such as the retromer-trafficking pathway and its implication in the disease and also provide a brief overview of therapeutic strategies to improve mitochondrial defects in PD. Bioenergetic defects, mutations in mitochondrial DNA, nuclear DNA gene mutations, alterations in mitochondrial dynamics, alterations in trafficking/transport and mitochondrial movement, abnormal size and morphology, impairment of transcription and the presence of mutated proteins associated with mitochondria are implicated in PD. In this review, we focus on the mechanisms underlying mitochondrial dysfunction in PD and bring to the forefront new signaling pathways that may be involved in PD. We also provide an overview of therapeutic strategies to improve mitochondrial defects in PD. This article is part of a special issue on Parkinson disease.

515 citations


Journal ArticleDOI
TL;DR: The current knowledge on iron homeostasis in the brain is discussed and how alterations in brain iron metabolism affect neuronal function with emphasis on iron dysregulation in Alzheimer′s and Parkinson′s diseases is explored.
Abstract: Brain iron homeostasis is increasingly recognized as a potential target for the development of drug therapies for aging-related disorders Dysregulation of iron metabolism associated with cellular damage and oxidative stress is reported as a common event in several neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases Indeed, many proteins initially characterized in those diseases such as amyloid-β protein, α-synuclein, and huntingtin have been linked to iron neurochemistry Iron plays a crucial role in maintaining normal physiological functions in the brain through its participation in many cellular functions such as mitochondrial respiration, myelin synthesis, and neurotransmitter synthesis and metabolism However, excess iron is a potent source of oxidative damage through radical formation and because of the lack of a body-wide export system, a tight regulation of its uptake, transport and storage is crucial in fulfilling cellular functions while keeping its level below the toxicity threshold In this review, we discuss the current knowledge on iron homeostasis in the brain and explore how alterations in brain iron metabolism affect neuronal function with emphasis on iron dysregulation in Alzheimer's and Parkinson's diseases Finally, we discuss recent findings implicating iron as a diagnostic and therapeutic target for Alzheimer's and Parkinson's diseases Iron plays a fundamental role in maintaining the high metabolic and energetic requirements of the brain However, iron has to be maintained in a delicate balance as both iron overload and iron deficiency are detrimental to the brain and can trigger neurodegeneration Here, we discuss the current knowledge on brain iron homeostasis and its involvement in major aging-related neurodegenerative diseases This article is part of a special issue on Parkinson disease

401 citations


Journal ArticleDOI
TL;DR: The challenge over the next decade will be to strengthen the findings delivered through genetic discovery by assessing the direct, biological consequences of risk variants in tandem with additional high‐content, integrated datasets.
Abstract: Parkinson's disease is a common, progressive neurodegenerative disorder, affecting 3% of those older than 75 years of age. Clinically, Parkinson's disease (PD) is associated with resting tremor, postural instability, rigidity, bradykinesia, and a good response to levodopa therapy. Over the last 15 years, numerous studies have confirmed that genetic factors contribute to the complex pathogenesis of PD. Highly penetrant mutations producing rare, monogenic forms of the disease have been discovered in singular genes such as SNCA, Parkin, DJ-1, PINK 1, LRRK2, and VPS35. Unique variants with incomplete penetrance in LRRK2 and GBA have been shown to be strong risk factors for PD in certain populations. Additionally, over 20 common variants with small effect sizes are now recognized to modulate the risk for PD. Investigating Mendelian forms of PD has provided precious insight into the pathophysiology that underlies the more common idiopathic form of disease; however, no treatment methodologies have developed. Furthermore, for identified common risk alleles, the functional basis underlying risk principally remains unknown. The challenge over the next decade will be to strengthen the findings delivered through genetic discovery by assessing the direct, biological consequences of risk variants in tandem with additional high-content, integrated datasets. This review discusses monogenic risk factors and mechanisms of Mendelian inheritance of Parkinson disease. Highly penetrant mutations in SNCA, Parkin, DJ-1, PINK 1, LRRK2 and VPS35 produce rare, monogenic forms of the disease, while unique variants within LRRK2 and GBA show incomplete penetrance and are strong risk factors for PD. Additionally, over 20 common variants with small effect sizes modulate disease risk. The challenge over the next decade is to strengthen genetic findings by assessing direct, biological consequences of risk variants in tandem with high-content, integrated datasets. This article is part of a special issue on Parkinson disease.

377 citations


Journal ArticleDOI
TL;DR: Evidence supporting the combined neuroinflammatory‐amyloid hypothesis for pathogenesis of AD is described, describing the key cell types, pathways and mediators involved.
Abstract: Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia. Deposition of amyloid-β (Aβ) remains a hallmark feature of the disease, yet the precise mechanism(s) by which this peptide induces neurotoxicity remain unknown. Neuroinflammation has long been implicated in AD pathology, yet its contribution to disease progression is still not understood. Recent evidence suggests that various Aβ complexes interact with microglial and astrocytic expressed pattern recognition receptors that initiate innate immunity. This process involves secretion of pro-inflammatory cytokines, chemokines and generation of reactive oxygen species that, in excess, drive a dysregulated immune response that contributes to neurodegeneration. The mechanisms by which a neuroinflammatory response can influence Aβ production, aggregation and eventual clearance are now becoming key areas where future therapeutic intervention may slow progression of AD. This review will focus on evidence supporting the combined neuroinflammatory-amyloid hypothesis for pathogenesis of AD, describing the key cell types, pathways and mediators involved. Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia worldwide. Deposition of intracellular plaques containing amyloid-beta (Aβ) is a hallmark proteinopathy of the disease yet the precise mechanisms by which this peptide induces neurotoxicity remains unknown. A neuroinflammatory response involving polarized microglial activity, enhanced astrocyte reactivity and elevated pro-inflammatory cytokine and chemokine load has long been implicated in AD and proposed to facilitate neurodegeneration. In this issue we discuss key receptor systems of innate immunity that detect Aβ, drive pro-inflammatory cytokine and chemokine production and influence Aβ aggregation and clearance. Evidence summarized in this review supports the combined neuroinflammatory-amyloid hypothesis for pathogenesis of AD and highlights the potential of immunomodulatory agents as potential future therapies for AD patients.

319 citations


Journal ArticleDOI
TL;DR: The adenosine modulation system mostly operates through inhibitory A1 (A1R) and facilitatory A2A receptors (A2AR) in the brain, and simultaneously bolstering A1R preconditioning and preventing excessive A2AR function might afford maximal neuroprotection.
Abstract: The adenosine modulation system mostly operates through inhibitory A1 (A1 R) and facilitatory A2A receptors (A2A R) in the brain. The activity-dependent release of adenosine acts as a brake of excitatory transmission through A1 R, which are enriched in glutamatergic terminals. Adenosine sharpens salience of information encoding in neuronal circuits: high-frequency stimulation triggers ATP release in the 'activated' synapse, which is locally converted by ecto-nucleotidases into adenosine to selectively activate A2A R; A2A R switch off A1 R and CB1 receptors, bolster glutamate release and NMDA receptors to assist increasing synaptic plasticity in the 'activated' synapse; the parallel engagement of the astrocytic syncytium releases adenosine further inhibiting neighboring synapses, thus sharpening the encoded plastic change. Brain insults trigger a large outflow of adenosine and ATP, as a danger signal. A1 R are a hurdle for damage initiation, but they desensitize upon prolonged activation. However, if the insult is near-threshold and/or of short-duration, A1 R trigger preconditioning, which may limit the spread of damage. Brain insults also up-regulate A2A R, probably to bolster adaptive changes, but this heightens brain damage since A2A R blockade affords neuroprotection in models of epilepsy, depression, Alzheimer's, or Parkinson's disease. This initially involves a control of synaptotoxicity by neuronal A2A R, whereas astrocytic and microglia A2A R might control the spread of damage. The A2A R signaling mechanisms are largely unknown since A2A R are pleiotropic, coupling to different G proteins and non-canonical pathways to control the viability of glutamatergic synapses, neuroinflammation, mitochondria function, and cytoskeleton dynamics. Thus, simultaneously bolstering A1 R preconditioning and preventing excessive A2A R function might afford maximal neuroprotection. The main physiological role of the adenosine modulation system is to sharp the salience of information encoding through a combined action of adenosine A2A receptors (A2A R) in the synapse undergoing an alteration of synaptic efficiency with an increased inhibitory action of A1 R in all surrounding synapses. Brain insults trigger an up-regulation of A2A R in an attempt to bolster adaptive plasticity together with adenosine release and A1 R desensitization; this favors synaptotocity (increased A2A R) and decreases the hurdle to undergo degeneration (decreased A1 R). Maximal neuroprotection is expected to result from a combined A2A R blockade and increased A1 R activation. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".

317 citations


Journal ArticleDOI
TL;DR: This year is 25 years after the publication of a series of papers that articulated the amyloid cascade hypothesis (ACH) for AD and how the ACH has led to a number of therapeutic approaches, all of which have, to date, failed to reach their primary efficacy end‐points in clinical trials.
Abstract: The first description of Alzheimer's disease (AD) was made in 1907 by Alois Alzheimer (Allgemeine Zeitschrift fur Psyciatrie und Psychisch-Gerichtliche Medizin 64, 3, 1907), although other contemporary physicians had made similar, and rather more complete, assessments of the neuropathological changes present in the AD brain (Fischer, Monatsschr Psychiat Neurol 22, 17, 1907). Our knowledge of AD has increased dramatically and continues to accelerate. This year is 25 years after the publication of a series of papers that, in various ways, articulated the amyloid cascade hypothesis (ACH) for AD (Beyreuther and Masters, Brain Pathol 1, 241–251, 1991; Hardy and Allsop, Trends Pharmacol Sci 12, 383–388, 1991; Selkoe, Neuron 6, 487–498, 1991; Hardy and Higgins, Science 256, 184–185, 1992). This review will cover some familiar territory, but we shall also place the ACH into a wider context, compare it with other hypotheses for AD, explore the evolution of the hypothesis to encompass new findings, and determine, irrespective of the merits of the hypothesis itself, whether it has been useful for the research field, both in academia and in industry. Finally, we shall review how the ACH has led to a number of therapeutic approaches, all of which have, to date, failed to reach their primary efficacy end-points in clinical trials and reflect upon what the future may hold. We review the amyloid cascade hypothesis (ACH) and compare it with other hypotheses that have been posited to explain the initiation and progression Alzheimer's disease. We document the data that support the ACH, and also reflect upon its deficiencies. We list the recent clinical failures of amyloidocentric drugs and anticipate the results that new therapeutic approaches may deliver. This article is part of the 60th Anniversary special issue.

307 citations


Journal ArticleDOI
TL;DR: The need to intensify therapeutic PD research is stressed and reasons why the translation of basic research to disease‐modifying therapies has been unsuccessful so far are pointed out.
Abstract: Over a period of more than 50 years, the symptomatic treatment of the motor symptoms of Parkinson disease (PD) has been optimized using pharmacotherapy, deep brain stimulation, and physiotherapy. The arsenal of pharmacotherapies includes L-Dopa, several dopamine agonists, inhibitors of monoamine oxidase (MAO)-B and catechol-o-methyltransferase (COMT), and amantadine. In the later course of the disease, motor complications occur, at which stage different oral formulations of L-Dopa or dopamine agonists with long half-life, a transdermal application or parenteral pumps for continuous drug supply can be subscribed. Alternatively, the patient is offered deep brain stimulation of the subthalamic nucleus (STN) or the internal part of the globus pallidus (GPi). For a more efficacious treatment of motor complications, new formulations of L-Dopa, dopamine agonists, and amantadine as well as new MAO-B and COMT inhibitors are currently tested in clinical trials, and some of them already yielding positive results in phase 3 trials. In addition, non-dopaminergic agents have been tested in the early clinical phase for the treatment of motor fluctuations and dyskinesia, including adenosine A2A antagonists (istradefylline, preladenant, and tozadenant) and modulators of the metabolic glutamate receptor 5 (mGluR5 - mavoglurant) and serotonin (eltoprazine) receptors. Recent clinical trials testing coenzyme Q10, the dopamine agonist pramipexole, creatine monohydrate, pioglitazone, or AAV-mediated gene therapy aimed at increasing expression of neurturin, did not prove efficacious. Treatment with nicotine, caffeine, inosine (a precursor of urate), and isradipine (a dihydropyridine calcium channel blocker), as well as active and passive immunization against α-synuclein and inhibitors or modulators of α-synuclein-aggregation are currently studied in clinical trials. However, to date, no disease-modifying treatment is available. We here review the current status of treatment options for motor and non-motor symptoms, and discuss current investigative strategies for disease modification. This review provides basic insights, mainly addressing basic scientists and non-specialists. It stresses the need to intensify therapeutic PD research and points out reasons why the translation of basic research to disease-modifying therapies has been unsuccessful so far. The symptomatic treatment of the motor symptoms of Parkinson disease (PD) has been constantly optimized using pharmacotherapy (L-Dopa, several dopamine agonists, inhibitors of monoamine oxidase (MAO)-B and catechol-o-methyltransferase (COMT), and amantadine), deep brain stimulation, and physiotherapy. For a more efficacious treatment of motor complications, new formulations of L-Dopa, dopamine agonists, and amantadine as well as new MAO-B and COMT inhibitors are currently tested in clinical trials. Non-dopaminergic agents have been tested in the early clinical phase for the treatment of motor fluctuations and dyskinesia. Recent clinical trials testing coenzyme Q10, the dopamine agonist pramipexole, creatine monohydrate, pioglitazone, or AAV-mediated gene therapy aimed at increasing expression of neurturin, did not prove efficacious. Treatment with nicotine, caffeine, and isradipine – a dihydropyridine calcium channel blocker – as well as active and passive immunization against α-synuclein and inhibitors of α-synuclein-aggregation are currently studied in clinical trials. However, to date, no disease-modifying treatment is available for PD. We here review the current status of treatment options and investigative strategies for both motor and non-motor symptoms. This review stresses the need to intensify therapeutic PD research and points out reasons why the translation of basic research to disease-modifying therapies has been unsuccessful so far. This article is part of a special issue on Parkinson disease.

270 citations


Journal ArticleDOI
TL;DR: The aim of this review will be to provide a general overview of TDP‐43 and FUS/TLS proteins and to highlight their physiological functions.
Abstract: The multiple roles played by RNA binding proteins in neurodegeneration have become apparent following the discovery of TAR DNA binding protein 43 kDa (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) involvement in amyotrophic lateral sclerosis and frontotemporal lobar dementia. In these two diseases, the majority of patients display the presence of aggregated forms of one of these proteins in their brains. The study of their functional properties currently represents a very promising target for developing the effective therapeutic options that are still lacking. This aim, however, must be preceded by an accurate evaluation of TDP-43 and FUS/TLS biological functions, both in physiological and disease conditions. Recent findings have uncovered several aspects of RNA metabolism that can be affected by misregulation of these two proteins. Progress has also been made in starting to understand how the aggregation of these proteins occurs and spreads from cell to cell. The aim of this review will be to provide a general overview of TDP-43 and FUS/TLS proteins and to highlight their physiological functions. At present, the emerging picture is that TDP-43 and FUS/TLS control several aspects of an mRNA's life, but they can also participate in DNA repair processes and in non-coding RNA metabolism. Although their regulatory activities are similar, they regulate mainly distinct RNA targets and show different pathogenetic mechanisms in amyotrophic lateral sclerosis/frontotemporal lobar dementia diseases. The identification of key events in these processes represents today the best chance of finding targetable options for therapeutic approaches that might actually make a difference at the clinical level. The two major RNA Binding Proteins involved in Amyotrophic Lateral Sclerosisi and Frontotemporal Dementia are TDP-43 and FUST/TLS. Both proteins are involved in regulating all aspects of RNA and RNA life cycle within neurons, from transcription, processing, and transport/stability to the formation of cytoplasmic and nuclear stress granules. For this reason, the aberrant aggregation of these factors during disease can impair multiple RNA metabolic pathways and eventually lead to neuronal death/inactivation. The purpose of this review is to provide an up-to-date perspective on what we know about this issue at the molecular level. This article is part of the Frontotemporal Dementia special issue.

270 citations


Journal ArticleDOI
TL;DR: It is shown that activated microglia can protect the brain from traumatic injury through modulation of neuronal synapses and can also protect the CNS by promoting neurogenesis, clearing debris, and suppressing inflammation in diseases such as stroke, autism, and Alzheimer's.
Abstract: Microglia were first identified over a century ago, but our knowledge about their ontogeny and functions has significantly expanded only recently. Microglia colonize the central nervous system (CNS) in utero and play essential roles in brain development. Once neural development is completed, microglia function as the resident innate immune cells of the CNS by surveying their microenvironment and becoming activated when the CNS is challenged by infection, injury, or disease. Despite the traditional view of microglia as being destructive in neurological diseases, recent studies have shown that microglia maintain CNS homeostasis and protect the CNS under various pathological conditions. Microglia can be prophylactically activated by modeling infection with systemic lipopolysaccharide injections and these activated microglia can protect the brain from traumatic injury through modulation of neuronal synapses. Microglia can also protect the CNS by promoting neurogenesis, clearing debris, and suppressing inflammation in diseases such as stroke, autism, and Alzheimer's. Microglia are the resident innate immune cells of the CNS. Despite the traditional view of microglia as being destructive in neurological diseases, recent studies have shown that they maintain tissue homeostasis and protect the CNS under various pathological conditions. They achieve so by clearing debris, promoting neurogenesis, suppressing inflammation and stripping inhibitory synapses. This review summarizes recent advances of our understanding on the multi-dimensional neuroprotective roles of microglia.

Journal ArticleDOI
TL;DR: The foremost mechanism of action of MMP‐9 in brain disorders appears to be its involvement in immune/inflammation responses that are related to the enzyme's ability to process and activate various cytokines and chemokines, as well as its contribution to blood–brain barrier disruption, facilitating the extravasation of leukocytes into brain parenchyma.
Abstract: Matrix metalloproteinase-9 (MMP-9) is a member of the metzincin family of mostly extracellularly operating proteases. Despite the fact that all of these enzymes might be target promiscuous, with largely overlapping catalogs of potential substrates, MMP-9 has recently emerged as a major and apparently unique player in brain physiology and pathology. The specificity of MMP-9 may arise from its very local and time-restricted actions, even when released in the brain from cells of various types, including neurons, glia, and leukocytes. In fact, the quantity of MMP-9 is very low in the naive brain, but it is markedly activated at the levels of enzymatic activity, protein abundance, and gene expression following various physiological stimuli and pathological insults. Neuronal MMP-9 participates in synaptic plasticity by controlling the shape of dendritic spines and function of excitatory synapses, thus playing a pivotal role in learning, memory, and cortical plasticity. When improperly unleashed, MMP-9 contributes to a large variety of brain disorders, including epilepsy, schizophrenia, autism spectrum disorder, brain injury, stroke, neurodegeneration, pain, brain tumors, etc. The foremost mechanism of action of MMP-9 in brain disorders appears to be its involvement in immune/inflammation responses that are related to the enzyme's ability to process and activate various cytokines and chemokines, as well as its contribution to blood-brain barrier disruption, facilitating the extravasation of leukocytes into brain parenchyma. However, another emerging possibility (i.e., the control of MMP-9 over synaptic plasticity) should not be neglected. The translational potential of MMP-9 has already been recognized in both the diagnosis and treatment domains. The most striking translational aspect may be the discovery of MMP-9 up-regulation in a mouse model of Fragile X syndrome, quickly followed by human studies and promising clinical trials that have sought to inhibit MMP-9. With regard to diagnosis, suggestions have been made to use MMP-9 alone or combined with tissue inhibitor of matrix metalloproteinase-1 or brain-derived neurotrophic factor as disease biomarkers. MMP-9, through cleavage of specific target proteins, plays a major role in synaptic plasticity and neuroinflammation, and by those virtues contributes to brain physiology and a host of neurological and psychiatric disorders. This article is part of the 60th Anniversary special issue.

Journal ArticleDOI
TL;DR: This brief review summarizes 60 years of conceptual advances that have demonstrated a role for active changes in neuronal connectivity as a controller of behavior and behavioral change based on modern genetic techniques, including in the human.
Abstract: This brief review summarizes 60 years of conceptual advances that have demonstrated a role for active changes in neuronal connectivity as a controller of behavior and behavioral change. Seminal studies in the first phase of the six-decade span of this review firmly established the cellular basis of behavior - a concept that we take for granted now, but which was an open question at the time. Hebbian plasticity, including long-term potentiation and long-term depression, was then discovered as being important for local circuit refinement in the context of memory formation and behavioral change and stabilization in the mammalian central nervous system. Direct demonstration of plasticity of neuronal circuit function in vivo, for example, hippocampal neurons forming place cell firing patterns, extended this concept. However, additional neurophysiologic and computational studies demonstrated that circuit development and stabilization additionally relies on non-Hebbian, homoeostatic, forms of plasticity, such as synaptic scaling and control of membrane intrinsic properties. Activity-dependent neurodevelopment was found to be associated with cell-wide adjustments in post-synaptic receptor density, and found to occur in conjunction with synaptic pruning. Pioneering cellular neurophysiologic studies demonstrated the critical roles of transmembrane signal transduction, NMDA receptor regulation, regulation of neural membrane biophysical properties, and back-propagating action potential in critical time-dependent coincidence detection in behavior-modifying circuits. Concerning the molecular mechanisms underlying these processes, regulation of gene transcription was found to serve as a bridge between experience and behavioral change, closing the 'nature versus nurture' divide. Both active DNA (de)methylation and regulation of chromatin structure have been validated as crucial regulators of gene transcription during learning. The discovery of protein synthesis dependence on the acquisition of behavioral change was an influential discovery in the neurochemistry of behavioral modification. Higher order cognitive functions such as decision making and spatial and language learning were also discovered to hinge on neural plasticity mechanisms. The role of disruption of these processes in intellectual disabilities, memory disorders, and drug addiction has recently been clarified based on modern genetic techniques, including in the human. The area of neural plasticity and behavior has seen tremendous advances over the last six decades, with many of those advances being specifically in the neurochemistry domain. This review provides an overview of the progress in the area of neuroplasticity and behavior over the life-span of the Journal of Neurochemistry. To organize the broad literature base, the review collates progress into fifteen broad categories identified as 'conceptual advances', as viewed by the author. The fifteen areas are delineated in the figure above. This article is part of the 60th Anniversary special issue.

Journal ArticleDOI
TL;DR: This review will focus on the pathogenic role that inflammasomes play in neurologic diseases such as Alzheimer's disease, traumatic brain injury, and multiple sclerosis.
Abstract: The inflammasome is a large macromolecular complex that contains multiple copies of a receptor or sensor of pathogen-derived or damage-derived molecular patterns, pro-caspase-1, and an adaptor called ASC (apoptotic speck containing protein with a CARD), which results in caspase-1 maturation. Caspase-1 then mediates the release of pro-inflammatory cytokines such as IL-1β and IL-18. These cytokines play critical roles in mediating immune responses during inflammation and innate immunity. Broader studies of the inflammasome over the years have implicated their roles in the pathogenesis of a variety of inflammatory diseases. Recently, studies have shown that the inflammasome modulates neuroinflammatory cells and the initial stages of neuroinflammation. A secondary cascade of events associated with neuroinflammation (such as oxidative stress) has been shown to activate the inflammasome, making the inflammasome a promising therapeutic target in the modulation of neurodegenerative diseases. This review will focus on the pathogenic role that inflammasomes play in neurologic diseases such as Alzheimer's disease, traumatic brain injury, and multiple sclerosis. We here review the role of the inflammasome in the pathogenesis of traumatic brain injury (TBI). TBI is initiated by physical force exerted to head, resulting in neuronal injury and death. Primary insult is followed by a secondary cascade of events following neuroinflammation such as mitochondrial dysfunction, production of reactive oxygen species, potassium effluxes, and release of circulating DNA. These events can potentially trigger the activation of NLRP3, NLRP1, and AIM2 during TBI but have yet to be confirmed (dashed lines). NLRP3, NLRP1, and AIM2 associate with the adaptor protein ASC, which initiates the cleavage of pro-caspase-1 to the mature form of caspase-1 which cleaves pro-IL-1β and pro-IL-18 into their mature forms of IL-1β and IL-18.

Journal ArticleDOI
TL;DR: Basic concepts of synapse structure and function are discussed, and a critical view of how aberrant synapse physiology may contribute to neurodevelopmental disorders as well as neurodegenerative disorders are provided.
Abstract: Synapses are essential components of neurons and allow information to travel coordinately throughout the nervous system to adjust behavior to environmental stimuli and to control body functions, memories, and emotions. Thus, optimal synaptic communication is required for proper brain physiology, and slight perturbations of synapse function can lead to brain disorders. In fact, increasing evidence has demonstrated the relevance of synapse dysfunction as a major determinant of many neurological diseases. This notion has led to the concept of synaptopathies as brain diseases with synapse defects as shared pathogenic features. In this review, which was initiated at the 13th International Society for Neurochemistry Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental disorders (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer and Parkinson disease). We finally discuss the appropriateness and potential implications of gathering synapse diseases under a single term. Understanding common causes and intrinsic differences in disease-associated synaptic dysfunction could offer novel clues toward synapse-based therapeutic intervention for neurological and neuropsychiatric disorders. In this Review, which was initiated at the 13th International Society for Neurochemistry (ISN) Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer's and Parkinson's diseases), gathered together under the term of synaptopathies. Read the Editorial Highlight for this article on page 783.

Journal ArticleDOI
TL;DR: This review will describe the current understanding of the molecular basis of FTD, focusing on insights gained from the study of human postmortem tissue, as well as some of the current controversies.
Abstract: Frontotemporal dementia (FTD) is a clinical syndrome with a heterogeneous molecular basis. The past decade has seen the discovery of several new FTD-causing genetic mutations and the identification of many of the relevant pathological proteins. The current neuropathological classification is based on the predominant protein abnormality and allows most cases of FTD to be placed into one of three broad molecular subgroups; frontotemporal lobar degeneration with tau, TDP-43 or FET protein accumulation. This review will describe our current understanding of the molecular basis of FTD, focusing on insights gained from the study of human postmortem tissue, as well as some of the current controversies. Most cases of FTD can be subclassified into one of three broad molecular subgroups based on the predominant protein that accumulates as pathological cellular inclusions. Understanding the associated pathogenic mechanisms and recognizing these FTD molecular subtypes in vivo will likely be crucial for the development and use of targeted therapies. This article is part of the Frontotemporal Dementia special issue.

Journal ArticleDOI
TL;DR: Neuronal activity unavoidably triggers reactive oxygen species, but the antioxidant defense of neurons is weak; hence, they use glucose for oxidation through the pentose‐phosphate pathway to preserve the redox status and develop therapeutic strategies to interfere with these pathways.
Abstract: Neuronal activity is a high-energy demanding process recruiting all neural cells that adapt their metabolism to sustain the energy and redox balance of neurons. During neurotransmission, synaptic cleft glutamate activates its receptors in neurons and in astrocytes, before being taken up by astrocytes through energy costly transporters. In astrocytes, the energy requirement for glutamate influx is likely to be met by glycolysis. To enable this, astrocytes are constitutively glycolytic, robustly expressing 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), an enzyme that is negligibly present in neurons by continuous degradation because of the ubiquitin-proteasome pathway via anaphase-promoting complex/cyclosome (APC)-Cdh1. Additional factors contributing to the glycolytic frame of astrocytes may include 5'-AMP-activated protein kinase (AMPK), hypoxia-inducible factor-1 (HIF-1), pyruvate kinase muscle isoform-2 (PKM2), pyruvate dehydrogenase kinase-4 (PDK4), lactate dehydrogenase-B, or monocarboxylate transporter-4 (MCT4). Neurotransmission-associated messengers, such as nitric oxide or ammonium, stimulate lactate release from astrocytes. Astrocyte-derived glycolytic lactate thus sustains the energy needs of neurons, which in contrast to astrocytes mainly rely on oxidative phosphorylation. Neuronal activity unavoidably triggers reactive oxygen species, but the antioxidant defense of neurons is weak; hence, they use glucose for oxidation through the pentose-phosphate pathway to preserve the redox status. Furthermore, neural activity is coupled with erythroid-derived erythroid-derived 2-like 2 (Nrf2) mediated transcriptional activation of antioxidant genes in astrocytes, which boost the de novo glutathione biosynthesis in neighbor neurons. Thus, the bioenergetics and redox programs of astrocytes are adapted to sustain neuronal activity and survival. Developing therapeutic strategies to interfere with these pathways may be useful to combat neurological diseases. Our current knowledge on brain's management of bioenergetics and redox requirements associated with neural activity is herein revisited. The astrocyte-neuronal lactate shuttle (ANLS) explains the energy needs of neurotransmission. Furthermore, neurotransmission unavoidably triggers increased mitochondrial reactive oxygen species in neurons. By coupling glutamatergic activity with transcriptional activation of antioxidant genes, astrocytes provide neurons with neuroprotective glutathione through an astrocyte-neuronal glutathione shuttle (ANGS). This article is part of the 60th Anniversary special issue.

Journal ArticleDOI
TL;DR: A potential mechanistic model by which loss of α‐syn function could result in at least some of the neurodegeneration observed in PD is provided, which may reveal alternative avenues of research in order to identify potential novel therapeutic targets for disease modifying strategies.
Abstract: The aggregation of alpha synuclein (α-syn) is a neuropathological feature that defines a spectrum of disorders collectively termed synucleinopathies, and of these, Parkinson's disease (PD) is arguably the best characterized. Aggregated α-syn is the primary component of Lewy bodies, the defining pathological feature of PD, while mutations or multiplications in the α-syn gene result in familial PD. The high correlation between α-syn burden and PD has led to the hypothesis that α-syn aggregation produces toxicity through a gain-of-function mechanism. However, α-syn has been implicated to function in a diverse range of essential cellular processes such as the regulation of neurotransmission and response to cellular stress. As such, an alternative hypothesis with equal explanatory power is that the aggregation of α-syn results in toxicity because of a toxic loss of necessary α-syn function, following sequestration of functional forms α-syn into insoluble protein aggregates. Within this review, we will provide an overview of the literature linking α-syn to PD and the knowledge gained from current α-syn-based animal models of PD. We will then interpret these data from the viewpoint of the α-syn loss-of-function hypothesis and provide a potential mechanistic model by which loss of α-syn function could result in at least some of the neurodegeneration observed in PD. By providing an alternative perspective on the etiopathogenesis of PD and synucleinopathies, this may reveal alternative avenues of research in order to identify potential novel therapeutic targets for disease modifying strategies. The correlation between α-synuclein burden and Parkinson's disease pathology has led to the hypothesis that α-synuclein aggregation produces toxicity through a gain-of-function mechanism. However, in this review, we discuss data supporting the alternative hypothesis that the aggregation of α-synuclein results in toxicity because of loss of necessary α-synuclein function at the presynaptic terminal, following sequestration of functional forms of α-synuclein into aggregates.

Journal ArticleDOI
TL;DR: TFEB is activated following mitophagy to maintain autophagy–lysosome pathway and mitochondrial biogenesis, and strategies to increase TFEB may improve both the clearance of α‐synuclein and mitochondrial dysfunction in PD.
Abstract: Impairment of the autophagy-lysosome pathway is implicated with the changes in α-synuclein and mitochondrial dysfunction observed in Parkinson's disease (PD). Damaged mitochondria accumulate PINK1, which then recruits parkin, resulting in ubiquitination of mitochondrial proteins. These can then be bound by the autophagic proteins p62/SQSTM1 and LC3, resulting in degradation of mitochondria by mitophagy. Mutations in PINK1 and parkin genes are a cause of familial PD. We found a significant increase in the expression of p62/SQSTM1 mRNA and protein following mitophagy induction in human neuroblastoma SH-SY5Y cells. p62 protein not only accumulated on mitochondria, but was also greatly increased in the cytosol. Increased p62/SQSMT1 expression was prevented in PINK1 knock-down cells, suggesting increased p62 expression was a consequence of mitophagy induction. The transcription factors Nrf2 and TFEB, which play roles in mitochondrial and lysosomal biogenesis, respectively, can regulate p62/SQSMT1. We report that both Nrf2 and TFEB translocate to the nucleus following mitophagy induction and that the increase in p62 mRNA levels was significantly impaired in cells with Nrf2 or TFEB knockdown. TFEB translocation also increased expression of itself and lysosomal proteins such as glucocerebrosidase and cathepsin D following mitophagy induction. We also report that cells with increased TFEB protein have significantly higher PGC-1α mRNA levels, a regulator of mitochondrial biogenesis, resulting in increased mitochondrial content. Our data suggests that TFEB is activated following mitophagy to maintain autophagy-lysosome pathway and mitochondrial biogenesis. Therefore, strategies to increase TFEB may improve both the clearance of α-synuclein and mitochondrial dysfunction in PD. Damaged mitochondria are degraded by the autophagy-lysosome pathway and is termed mitophagy. Following mitophagy induction, the transcription factors Nrf2 and TFEB translocate to the nucleus, inducing the transcription of genes encoding for autophagic proteins such as p62, as well as lysosomal and mitochondrial proteins. We propose that these events maintain autophagic flux, replenish lysosomes and replace mitochondria.

Journal ArticleDOI
TL;DR: Findings indicate that exosome‐mediated siRNA delivery may be a strong candidate to block inflammasome activation following CNS injury.
Abstract: Neuroinflammation is a response against harmful effects of diverse stimuli and participates in the pathogenesis of brain and spinal cord injury (SCI). The innate immune response plays a role in neuroinflammation following CNS injury via activation of multiprotein complexes termed inflammasomes that regulate the activation of caspase 1 and the processing of the pro-inflammatory cytokines IL-1β and IL-18. We report here that the expression of components of the nucleotide-binding and oligomerization domain (NOD)-like receptor protein-1 (NLRP-1) inflammasome, apoptosis speck-like protein containing a caspase recruitment domain (ASC), and caspase 1 are significantly elevated in spinal cord motor neurons and cortical neurons after CNS trauma. Moreover, NLRP1 inflammasome proteins are present in exosomes derived from CSF of SCI and traumatic brain-injured patients following trauma. To investigate whether exosomes could be used to therapeutically block inflammasome activation in the CNS, exosomes were isolated from embryonic cortical neuronal cultures and loaded with short-interfering RNA (siRNA) against ASC and administered to spinal cord-injured animals. Neuronal-derived exosomes crossed the injured blood-spinal cord barrier, and delivered their cargo in vivo, resulting in knockdown of ASC protein levels by approximately 76% when compared to SCI rats treated with scrambled siRNA. Surprisingly, siRNA silencing of ASC also led to a significant decrease in caspase 1 activation and processing of IL-1β after SCI. These findings indicate that exosome-mediated siRNA delivery may be a strong candidate to block inflammasome activation following CNS injury. We propose the following signaling cascade for inflammasome activation in peripheral tissues after CNS injury: CNS trauma induces inflammasome activation in the nervous system and secretion of exosomes containing inflammasome protein cargo into cerebral spinal fluid. The inflammasome containing exosomes then fuse with target cells to activate the innate immune response in peripheral tissues. We suggest that these findings may be used to develop new therapeutics to treat the devastating inflammation and cell destruction evoked by CNS injuries. IL-1β and IL-18 = pro-inflammatory cytokines.

Journal ArticleDOI
TL;DR: The role of specific mechanisms, both inside and outside cells, which maintain proteostasis, including molecular chaperones, protein degradation pathways, and the active formation of inclusions, in neurodegenerative diseases associated with protein aggregation are discussed.
Abstract: A characteristic of many neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), is the aggregation of specific proteins into protein inclusions and/or plaques in degenerating brains. While much of the aggregated protein consists of disease specific proteins, such as amyloid-β, α-synuclein, or superoxide dismutase1 (SOD1), many other proteins are known to aggregate in these disorders. Although the role of protein aggregates in the pathogenesis of neurodegenerative diseases remains unknown, the ubiquitous association of misfolded and aggregated proteins indicates that significant dysfunction in protein homeostasis (proteostasis) occurs in these diseases. Proteostasis is the concept that the integrity of the proteome is in fine balance and requires proteins in a specific conformation, concentration, and location to be functional. In this review, we discuss the role of specific mechanisms, both inside and outside cells, which maintain proteostasis, including molecular chaperones, protein degradation pathways, and the active formation of inclusions, in neurodegenerative diseases associated with protein aggregation. A characteristic of many neurodegenerative diseases is the aggregation of specific proteins, which alone provides strong evidence that protein homeostasis is disrupted in these disease states. Proteostasis is the maintenance of the proteome in the correct conformation, concentration, and location by functional pathways such as molecular chaperones and protein degradation machinery. Here, we discuss the potential roles of quality control pathways, both inside and outside cells, in the loss of proteostasis during aging and disease.

Journal ArticleDOI
TL;DR: It is found that 3OHB metabolism increases mitochondrial respiration which drives changes in expression of brain‐derived neurotrophic factor (BDNF) in cultured cerebral cortical neurons.
Abstract: During fasting and vigorous exercise, a shift of brain cell energy substrate utilization from glucose to the ketone 3-hydroxybutyrate (3OHB) occurs. Studies have shown that 3OHB can protect neurons against excitotoxicity and oxidative stress, but the underlying mechanisms remain unclear. Neurons maintained in the presence of 3OHB exhibited increased oxygen consumption and ATP production, and an elevated NAD+ /NADH ratio. We found that 3OHB metabolism increases mitochondrial respiration which drives changes in expression of brain-derived neurotrophic factor (BDNF) in cultured cerebral cortical neurons. The mechanism by which 3OHB induces Bdnf gene expression involves generation of reactive oxygen species, activation of the transcription factor NF-κB, and activity of the histone acetyltransferase p300/EP300. Because BDNF plays important roles in synaptic plasticity and neuronal stress resistance, our findings suggest cellular signaling mechanisms by which 3OHB may mediate adaptive responses of neurons to fasting, exercise, and ketogenic diets.

Journal ArticleDOI
TL;DR: It is likely that, as in idiopathic PD, alpha‐synuclein accumulation, mitochondrial dysfunction, autophagic impairment, oxidative and endoplasmic reticulum stress may contribute to the development and progression of PD‐GBA1.
Abstract: Parkinson disease (PD) is the second most common neurodegenerative disorder after Alzheimer disease, whereas Gaucher disease (GD) is the most frequent lysosomal storage disorder caused by homozygous mutations in the glucocerebrosidase (GBA1) gene. Increased risk of developing PD has been observed in both GD patients and carriers. It has been estimated that GBA1 mutations confer a 20- to 30-fold increased risk for the development of PD, and that at least 7-10% of PD patients have a GBA1 mutation. To date, mutations in the GBA1 gene constitute numerically the most important risk factor for PD. The type of PD associated with GBA1 mutations (PD-GBA1) is almost identical to idiopathic PD, except for a slightly younger age of onset and a tendency to more cognitive impairment. Importantly, the pathology of PD-GBA1 is identical to idiopathic PD, with nigral dopamine cell loss, Lewy bodies, and neurites containing alpha-synuclein. The mechanism by which GBA1 mutations increase the risk for PD is still unknown. However, given that clinical manifestation and pathological findings in PD-GBA1 patients are almost identical to those in idiopathic PD individuals, it is likely that, as in idiopathic PD, alpha-synuclein accumulation, mitochondrial dysfunction, autophagic impairment, oxidative and endoplasmic reticulum stress may contribute to the development and progression of PD-GBA1. Here, we review the GBA1 gene, its role in GD, and its link with PD. The impact of glucocerebrosidase 1 (GBA1) mutations on functioning of endoplasmic reticulum (ER), lysosomes, and mitochondria. GBA1 mutations resulting in production of misfolded glucocerebrosidase (GCase) significantly affect the ER functioning. Misfolded GCase trapped in the ER leads to both an increase in the ubiquitin-proteasome system (UPS) and the ER stress. The presence of ER stress triggers the unfolded protein response (UPR) and/or endoplasmic reticulum-associated degradation (ERAD). The prolonged activation of UPR and ERAD subsequently leads to increased apoptosis. The presence of misfolded GCase in the lysosomes together with a reduction in wild-type GCase levels lead to a retardation of alpha-synuclein degradation via chaperone-mediated autophagy (CMA), which subsequently results in alpha-synuclein accumulation and aggregation. Impaired lysosomal functioning also causes a decrease in the clearance of autophagosomes, and so their accumulation. GBA1 mutations perturb normal mitochondria functioning by increasing generation of free radical species (ROS) and decreasing adenosine triphosphate (ATP) production, oxygen consumption, and membrane potential. GBA1 mutations also lead to accumulation of dysfunctional and fragmented mitochondria. This article is part of a special issue on Parkinson disease.

Journal ArticleDOI
TL;DR: Establishing whether alpha‐synuclein has a causative role in all synucleinopathies will enable the identification of targets for the development of novel therapeutic strategies for this devastating group of disorders.
Abstract: Parkinson's disease belongs to a group of currently incurable neurodegenerative disorders characterized by the misfolding and accumulation of alpha-synuclein aggregates that are commonly known as synucleinopathies. Clinically, synucleinopathies are heterogeneous, reflecting the somewhat selective neuronal vulnerability characteristic of each disease. The precise molecular underpinnings of synucleinopathies remain unclear, but the process of aggregation of alpha-synuclein appears as a central event. However, there is still no consensus with respect to the toxic forms of alpha-synuclein, hampering our ability to use the protein as a target for therapeutic intervention. To decipher the molecular bases of synucleinopathies, it is essential to understand the complex triangle formed between the structure, function and toxicity of alpha-synuclein. Recently, important steps have been undertaken to elucidate the role of the protein in both physiological and pathological conditions. Here, we provide an overview of recent findings in the field of alpha-synuclein research, and put forward a new perspective over paradigms that persist in the field. Establishing whether alpha-synuclein has a causative role in all synucleinopathies will enable the identification of targets for the development of novel therapeutic strategies for this devastating group of disorders. Alpha-synuclein is the speculated cornerstone of several neurodegenerative disorders known as Synucleinopathies. Nevertheless, the mechanisms underlying the pathogenic effects of this protein remain unknown. Here, we review the recent findings in the three corners of alpha-synuclein biology – structure, function and toxicity – and discuss the enigmatic roads that have accompanied alpha-synuclein from the beginning. This article is part of a special issue on Parkinson disease.

Journal ArticleDOI
TL;DR: This review is focused on BDNF isoforms, their participation in the process of neurogenesis taking place in the hippocampus of adult mammals, and the modulation of their expression by serotonergic agents.
Abstract: The brain-derived neurotrophic factor, BDNF, was discovered more than 30 years ago and, like other members of the neurotrophin family, this neuropeptide is synthetized as a proneurotrophin, the pro-BDNF, which is further cleaved to yield mature BDNF. The myriad of actions of these two BDNF isoforms in the central nervous system is constantly increasing and requires the development of sophisticated tools and animal models to refine our understanding. This review is focused on BDNF isoforms, their participation in the process of neurogenesis taking place in the hippocampus of adult mammals, and the modulation of their expression by serotonergic agents. Interestingly, around this triumvirate of BDNF, serotonin, and neurogenesis, a series of recent research has emerged with apparently counterintuitive results. This calls for an exhaustive analysis of the data published so far and encourages thorough work in the quest for new hypotheses in the field. BDNF is synthetized as a pre-proneurotrophin. After removal of the pre-region, proBDNF can be cleaved by intracellular or extracellular proteases. Mature BDNF can bind TrkB receptors, promoting their homodimerization and intracellular phosphorylation. Phosphorylated-TrkB can activate three different signaling pathways. Whereas G-protein-coupled receptors can transactivate TrkB receptors, truncated forms can inhibit mBDNF signaling. Pro-BDNF binds p75NTR by its mature domain, whereas the pro-region binds co-receptors.

Journal ArticleDOI
TL;DR: Thioflavin T assays revealed that exosomal PrPC accelerates fibrillization of amyloid beta, thereby reducing neurotoxic effects imparted by oligomeric Aβ, providing further evidence for a protective role of exosomes in Aβ‐mediated neurodegeneration.
Abstract: Alzheimer's disease is a common neurodegenerative, progressive, and fatal disorder. Generation and deposition of amyloid beta (Aβ) peptides associate with its pathogenesis and small soluble Aβ oligomers show the most pronounced neurotoxic effects and correlate with disease initiation and progression. Recent findings showed that Aβ oligomers bind to the cellular prion protein (PrP(C) ) eliciting neurotoxic effects. The role of exosomes, small extracellular vesicles of endosomal origin, in Alzheimer's disease is only poorly understood. Besides serving as disease biomarkers they may promote Aβ plaque formation, decrease Aβ-mediated synaptotoxicity, and enhance Aβ clearance. Here, we explore how exosomal PrP(C) connects to protective functions attributed to exosomes in Alzheimer's disease. To achieve this, we generated a mouse neuroblastoma PrP(C) knockout cell line using transcription activator-like effector nucleases. Using these, as well as SH-SY5Y human neuroblastoma cells, we show that PrP(C) is highly enriched on exosomes and that exosomes bind amyloid beta via PrP(C) . Exosomes showed highest binding affinity for dimeric, pentameric, and oligomeric Aβ species. Thioflavin T assays revealed that exosomal PrP(C) accelerates fibrillization of amyloid beta, thereby reducing neurotoxic effects imparted by oligomeric Aβ. Our study provides further evidence for a protective role of exosomes in Aβ-mediated neurodegeneration and highlights the importance of exosomal PrP(C) in molecular mechanisms of Alzheimer's disease. We show that the prion protein (PrP(C) ) on exosomes captures neurotoxic species of amyloid beta (Aβ) promoting its fibrillization. Our study provides evidence for a protective role of exosomes in Alzheimer`s disease and suggests that, depending on its membrane topology, PrP(C) holds a dual function: when expressed at the neuronal surface it acts as receptor for Aβ leading to neurotoxic signaling, whereas it detoxifies Aβ when present on exosomes. This provides further support for key roles of PrP(C) in Alzheimer's disease.

Journal ArticleDOI
TL;DR: How FTLD specific issues, such as disease heterogeneity, the presence of an unclear family history and the possible role of an oligogenic basis of FTLD, can pose challenges for future FTLD gene identification and risk assessment of specific variants are discussed.
Abstract: Frontotemporal lobar degeneration (FTLD) comprises a highly heterogeneous group of disorders clinically associated with behavioral and personality changes, language impairment, and deficits in executive functioning, and pathologically associated with degeneration of frontal and temporal lobes. Some patients present with motor symptoms including amyotrophic lateral sclerosis. Genetic research over the past two decades in FTLD families led to the identification of three common FTLD genes (microtubule-associated protein tau, progranulin, and chromosome 9 open reading frame 72) and a small number of rare FTLD genes, explaining the disease in almost all autosomal dominant FTLD families but only a minority of apparently sporadic patients or patients in whom the family history is less clear. Identification of additional FTLD (risk) genes is therefore highly anticipated, especially with the emerging use of next-generation sequencing. Common variants in the transmembrane protein 106 B were identified as a genetic risk factor of FTLD and disease modifier in patients with known mutations. This review summarizes for each FTLD gene what we know about the type and frequency of mutations, their associated clinical and pathological features, and potential disease mechanisms. We also provide an overview of emerging disease pathways encompassing multiple FTLD genes. We further discuss how FTLD specific issues, such as disease heterogeneity, the presence of an unclear family history and the possible role of an oligogenic basis of FTLD, can pose challenges for future FTLD gene identification and risk assessment of specific variants. Finally, we highlight emerging clinical, genetic, and translational research opportunities that lie ahead. Genetic research led to the identification of three common FTLD genes with rare variants (MAPT, GRN, and C9orf72) and a small number of rare genes. Efforts are now ongoing, which aimed at the identification of rare variants with high risk and/or low frequency variants with intermediate effect. Common risk variants have also been identified, such as TMEM106B. This review discusses the current knowledge on FTLD genes and the emerging disease pathways encompassing multiple FTLD genes.

Journal ArticleDOI
TL;DR: The anti‐inflammatory and neuroprotective actions of NA are summarized, examples of how LC damage worsens disease are summed up, and several approaches taken to treat or prevent reductions in NA levels and LC neuronal damage are discussed.
Abstract: Aside from its roles in as a classical neurotransmitter involved in regulation of behavior, noradrenaline (NA) has other functions in the CNS. This includes restricting the development of neuroinflammatory activation, providing neurotrophic support to neurons, and providing neuroprotection against oxidative stress. In recent years, it has become evident that disruption of physiological NA levels or signaling is a contributing factor to a variety of neurological diseases and conditions including Alzheimer's disease (AD) and Multiple Sclerosis. The basis for dysregulation in these diseases is, in many cases, due to damage occurring to noradrenergic neurons present in the locus coeruleus (LC), the major source of NA in the CNS. LC damage is present in AD, multiple sclerosis, and a large number of other diseases and conditions. Studies using animal models have shown that experimentally induced lesion of LC neurons exacerbates neuropathology while treatments to compensate for NA depletion, or to reduce LC neuronal damage, provide benefit. In this review, we will summarize the anti-inflammatory and neuroprotective actions of NA, summarize examples of how LC damage worsens disease, and discuss several approaches taken to treat or prevent reductions in NA levels and LC neuronal damage. Further understanding of these events will be of value for the development of treatments for AD, multiple sclerosis, and other diseases and conditions having a neuroinflammatory component. The classical neurotransmitter noradrenaline (NA) has critical roles in modulating behaviors including those involved in sleep, anxiety, and depression. However, NA can also elicit anti-inflammatory responses in glial cells, can increase neuronal viability by inducing neurotrophic factor expression, and can reduce neuronal damage due to oxidative stress by scavenging free radicals. NA is primarily produced by tyrosine hydroxylase (TH) expressing neurons in the locus coeruleus (LC), a relatively small brainstem nucleus near the IVth ventricle which sends projections throughout the brain and spinal cord. It has been known for close to 50 years that LC neurons are lost during normal aging, and that loss is exacerbated in neurological diseases including Parkinson's disease and Alzheimer's disease. LC neuronal damage and glial activation has now been documented in a variety of other neurological conditions and diseases, however, the causes of LC damage and cell loss remain largely unknown. A number of approaches have been developed to address the loss of NA and increased inflammation associated with LC damage, and several methods are being explored to directly minimize the extent of LC neuronal cell loss or function. In this review, we will summarize some of the consequences of LC loss, consider several factors that likely contribute to that loss, and discuss various ways that have been used to increase NA or to reduce LC damage. This article is part of the 60th Anniversary special issue.

Journal ArticleDOI
TL;DR: Aerobic glycolysis is a complex, regulated phenomenon that is prevented by propranolol, a non‐specific β‐adrenoceptor antagonist that implicates adrenergic regulatory processes including adrenal release of epinephrine, signaling to brain via the vagus nerve, and increased norepinephrine release from the locus coeruleus.
Abstract: Aerobic glycolysis occurs during brain activation and is characterized by preferential up-regulation of glucose utilization compared with oxygen consumption even though oxygen level and delivery are adequate. Aerobic glycolysis is a widespread phenomenon that underlies energetics of diverse brain activities, such as alerting, sensory processing, cognition, memory, and pathophysiological conditions, but specific cellular functions fulfilled by aerobic glycolysis are poorly understood. Evaluation of evidence derived from different disciplines reveals that aerobic glycolysis is a complex, regulated phenomenon that is prevented by propranolol, a non-specific β-adrenoceptor antagonist. The metabolic pathways that contribute to excess utilization of glucose compared with oxygen include glycolysis, the pentose phosphate shunt pathway, the malate-aspartate shuttle, and astrocytic glycogen turnover. Increased lactate production by unidentified cells, and lactate dispersal from activated cells and lactate release from the brain, both facilitated by astrocytes, are major factors underlying aerobic glycolysis in subjects with low blood lactate levels. Astrocyte-neuron lactate shuttling with local oxidation is minor. Blockade of aerobic glycolysis by propranolol implicates adrenergic regulatory processes including adrenal release of epinephrine, signaling to brain via the vagus nerve, and increased norepinephrine release from the locus coeruleus. Norepinephrine has a powerful influence on astrocytic metabolism and glycogen turnover that can stimulate carbohydrate utilization more than oxygen consumption, whereas β-receptor blockade 're-balances' the stoichiometry of oxygen-glucose or -carbohydrate metabolism by suppressing glucose and glycogen utilization more than oxygen consumption. This conceptual framework may be helpful for design of future studies to elucidate functional roles of preferential non-oxidative glucose utilization and glycogen turnover during brain activation. Aerobic glycolysis, the preferential up-regulation of glucose utilization (CMRglc ) compared with oxygen consumption (CMRO2 ) during brain activation, is blocked by propranolol. Epinephrine release from the adrenal gland stimulates vagus nerve signaling to the locus coeruleus, enhancing norepinephrine release in the brain, and regulation of astrocytic and neuronal metabolism to stimulate CMRglc more than CMRO2 . Propranolol suppresses CMRglc more than CMRO2 .

Journal Article
TL;DR: It is shown that anti‐Aβ antibodies stimulate Aβ uptake and amyloid plaque clearance in a dose‐dependent manner in the presence or absence of TREM2, and Titration experiments revealed that reduced efficacy of amyloids plaque clearance by Trem2 knockout cells can be compensated by elevating the concentration of therapeutic antibodies.