scispace - formally typeset
Open AccessJournal ArticleDOI

PLGA-based nanoparticles as cancer drug delivery systems.

TLDR
In this article, the structure and properties of poly (lactic-co-glycolic acid) copolymers synthesized by ring-opening polymerization of DL-lactide and glicolide were characterized using 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectrograph and differential scanning calorimetry.
Abstract
Poly (lactic-co-glycolic acid) (PLGA) is one of the most effective biodegradable polymeric nanoparticles (NPs). It has been approved by the US FDA to use in drug delivery systems due to controlled and sustained- release properties, low toxicity, and biocompatibility with tissue and cells. In the present review, the structure and properties of PLGA copolymers synthesized by ring-opening polymerization of DL-lactide and glicolide were characterized using 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy and differential scanning calorimetry. Methods of preparation and characterization, various surface modifications, encapsulation of diverse anticancer drugs, active or passive tumor targeting and different release mechanisms of PLGA nanoparticles are discussed. Increasing experience in the application of PLGA nanoparticles has provided a promising future for use of these nanoparticles in cancer treatment, with high efficacy and few side effects.

read more

Citations
More filters
Journal ArticleDOI

Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy

TL;DR: This work presents a new generation of high-performance liquid chromatography platforms for selective separation of Na6(CO3) from Na4(SO4) through Na2SO4 and shows real-world applications in drug discovery and treatment of central nervous system disorders.
Journal ArticleDOI

Dendrimers: synthesis, applications, and properties

TL;DR: A variety of dendrimers exist, and each has biological properties such as polyvalency, self-assembling, electrostatic interactions, chemical stability, low cytotoxicity, and solubility that make them a good choice in the medical field.
Journal ArticleDOI

Carbon nanotubes: properties, synthesis, purification, and medical applications

TL;DR: The strength and flexibility of carbon nanotubes make them of potential use in controlling other nanoscale structures, which suggests they will have a significant role in nanotechnology engineering.
Journal ArticleDOI

Insight into nanoparticle cellular uptake and intracellular targeting

TL;DR: An account of ligand-targeted nanoparticles for receptor-mediated cellular internalization as a strategy for modulating the cellular uptake of nanoparticles is presented and prospects, potential, and concrete expectations from the field of targeted nanomedicines and strategies to meet those expectations are provided.
Journal ArticleDOI

Application of gold nanoparticles in biomedical and drug delivery

TL;DR: In this review, some important applications of gold nanoparticles are explained, including those as sensing, image enhancement, and delivery agents in medicine.
References
More filters
Journal ArticleDOI

Global cancer statistics

TL;DR: A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination, and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake.
Journal ArticleDOI

Nanocarriers as an emerging platform for cancer therapy

TL;DR: The arsenal of nanocarriers and molecules available for selective tumour targeting, and the challenges in cancer treatment are detailed and emphasized.
Journal Article

A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs

TL;DR: It is speculated that the tumoritropic accumulation of smancs and other proteins resulted because of the hypervasculature, an enhanced permeability to even macromolecules, and little recovery through either blood vessels or lymphatic vessels in tumors of tumor-bearing mice.
Journal ArticleDOI

Nanoparticle therapeutics: an emerging treatment modality for cancer

TL;DR: The features of nanoparticle therapeutics that distinguish them from previous anticancer therapies are highlighted, and how these features provide the potential for therapeutic effects that are not achievable with other modalities are described.
Journal ArticleDOI

Biodegradable polymeric nanoparticles as drug delivery devices

TL;DR: This review presents the most outstanding contributions in the field of biodegradable polymeric nanoparticles used as drug delivery systems from 1990 through mid-2000.
Related Papers (5)