scispace - formally typeset
Open AccessJournal ArticleDOI

Present-Day Growth of Black Holes and Bulges: The Sloan Digital Sky Survey Perspective

Reads0
Chats0
TLDR
In this article, the authors investigate the accretion-driven growth of supermassive black holes in the low-redshift universe using 23,000 narrow-emission-line ("type 2") active galactic nuclei and the complete sample of 123,000 galaxies in the Sloan Digital Sky Survey from which they were drawn.
Abstract
We investigate the accretion-driven growth of supermassive black holes in the low-redshift universe using 23,000 narrow-emission-line ("type 2") active galactic nuclei (AGNs) and the complete sample of 123,000 galaxies in the Sloan Digital Sky Survey from which they were drawn. We use the stellar velocity dispersions of the early-type galaxies and AGN hosts to estimate their black hole masses, and we use the AGN [O III] λ5007 emission line luminosities to estimate black hole accretion rates. We find that most present-day accretion occurs onto black holes with masses less than 108 M☉ that reside in moderately massive galaxies (M* ≈ 1010-1011.5 M☉) with high stellar surface mass densities (μ* ≈ 108.5-109.5 M☉ kpc-2) and young stellar populations. The volume-averaged accretion rates of low-mass black holes (<3 × 107 M☉) imply that this population is growing on a timescale that is comparable to the age of the universe. Around half this growth takes place in AGNs that are radiating within a factor of 5 of the Eddington luminosity. Such systems are rare, making up only 0.2% of the low-mass black hole population at the present day. The rest of the growth occurs in lower luminosity AGNs. The growth timescale is more than 2 orders of magnitude longer for the population of the most massive black holes in our sample. The volume-averaged ratio of star formation to black hole accretion in bulge-dominated galaxies is ~1000, in remarkable agreement with the observed ratio of stellar mass to black hole mass in nearby galaxy bulges. We conclude that (1) bulge formation and black hole formation are tightly coupled, even in present-day galaxies, and (2) the evolution of the AGN luminosity function documented in recent optical and X-ray surveys is driven by a decrease in the characteristic mass scale of actively accreting black holes.

read more

Citations
More filters
Journal ArticleDOI

Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies

TL;DR: In this paper, supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics, and it has been shown that BHs and bulges coevolve by regulating each other's growth.
Journal ArticleDOI

The host galaxies and classification of active galactic nuclei

TL;DR: In this paper, the authors present an analysis of the host properties of 85224 emission-line galaxies selected from the Sloan Digital Sky Survey and derive a new empirical classification scheme which cleanly separates star-forming galaxies, composite AGN-H ii galaxies, Seyferts and LINERs and study the host galaxy properties of these different classes of objects.
Journal ArticleDOI

A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids

TL;DR: In this article, an evolutionary model for starbursts, quasars, and spheroidal galaxies is presented, in which mergers between gas-rich galaxies drive nuclear inflows of gas, producing starburst and feeding the buried growth of supermassive black holes (BHs) until feedback expels gas and renders a briefly visible optical quasar.
Posted Content

Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material

TL;DR: Kormendy and Ho as mentioned in this paper proposed a method to estimate the BH masses for galaxies with active nuclei (AGNs) based on the observational criteria that are used to classify classical and pseudo bulges.
Journal ArticleDOI

A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity

TL;DR: In this paper, a model for the cosmological role of mergers in the evolution of starbursts, quasars, and spheroidal galaxies is proposed.
References
More filters
Journal ArticleDOI

Stellar population synthesis at the resolution of 2003

TL;DR: In this article, the spectral evolution of stellar populations at ages between 100,000 yr and 20 Gyr at a resolution of 3 A across the whole wavelength range from 3200 to 9500 A for a wide range of metallicities.
Journal ArticleDOI

The Sloan Digital Sky Survey: Technical Summary

Donald G. York
- 27 Jun 2000 - 
TL;DR: The Sloan Digital Sky Survey (SDSS) as mentioned in this paper provides the data to support detailed investigations of the distribution of luminous and non-luminous matter in the Universe: a photometrically and astrometrically calibrated digital imaging survey of pi steradians above about Galactic latitude 30 degrees in five broad optical bands.
Journal ArticleDOI

The Sloan Digital Sky Survey: Technical summary

Donald G. York, +151 more
TL;DR: The Sloan Digital Sky Survey (SDSS) as discussed by the authors provides the data to support detailed investigations of the distribution of luminous and non-luminous matter in the universe: a photometrically and astrometrically calibrated digital imaging survey of π sr above about Galactic latitude 30° in five broad optical bands to a depth of g' ~ 23 mag.
Journal ArticleDOI

On the variation of the initial mass function

TL;DR: In this paper, the uncertainty inherent in any observational estimate of the IMF is investigated by studying the scatter introduced by Poisson noise and the dynamical evolution of star clusters, and it is found that this apparent scatter reproduces quite well the observed scatter in power-law index determinations, thus defining the fundamental limit within which any true variation becomes undetectable.
Journal ArticleDOI

Classification parameters for the emission-line spectra of extragalactic objects

TL;DR: In this paper, the merits of various emission-line intensity ratios for classifying the spectra of extragalactic objects were investigated and it was shown empirically that several combinations of easily-measured lines can be used to separate objects into one of four categories according to the principal excitation mechanism: normal H II regions, planetary nebulae, objects photoionized by a power-law continuum, and objects excited by shock-wave heating.
Related Papers (5)