scispace - formally typeset
Journal ArticleDOI

Quantum-Dot Spin-State Preparation with Near-Unity Fidelity

Reads0
Chats0
TLDR
Laser cooling of a single electron spin trapped in a semiconductor quantum dot is demonstrated, which corresponds to a spin-state preparation with a fidelity exceeding 99.8% within the framework of quantum information processing.
Abstract
We have demonstrated laser cooling of a single electron spin trapped in a semiconductor quantum dot. Optical coupling of electronic spin states was achieved using resonant excitation of the charged quantum dot (trion) transitions along with the heavy-light hole mixing, which leads to weak yet finite rates for spin-flip Raman scattering. With this mechanism, the electron spin can be cooled from 4.2 to 0.020 kelvin, as confirmed by the strength of the induced Pauli blockade of the trion absorption. Within the framework of quantum information processing, this corresponds to a spin-state preparation with a fidelity exceeding 99.8%.

read more

Citations
More filters
Journal ArticleDOI

Spins in few-electron quantum dots

TL;DR: In this article, the physics of spins in quantum dots containing one or two electrons, from an experimentalist's viewpoint, are described, and various methods for extracting spin properties from experiment are presented, restricted exclusively to electrical measurements.
Journal ArticleDOI

Quantum Computing

TL;DR: A number of physical systems, spanning much of modern physics, are being developed for this task, ranging from single particles of light to superconducting circuits, and it is not yet clear which, if any, will ultimately prove successful as discussed by the authors.
Journal ArticleDOI

Coherent dynamics of coupled electron and nuclear spin qubits in diamond.

TL;DR: Coherent manipulation of an individual electron spin associated with a nitrogen-vacancy center in diamond was used to gain insight into its local environment, which shows that this environment is effectively separated into a set of individual proximal 13Cnuclear spins, which are coupled coherently to the electron spin, and the remainder of the 13C nuclear spins, who cause the loss of coherence.
Journal ArticleDOI

Driven coherent oscillations of a single electron spin in a quantum dot

TL;DR: In this paper, the authors demonstrate the feasibility of operating single-electron spins in a quantum dot as quantum bits by applying short bursts of the oscillating magnetic field and observing about eight oscillations of the spin state during a microsecond burst.
Journal Article

Driven coherent oscillations of a single electron spin in a quantum dot

TL;DR: The experimental realization of single electron spin rotations in a double quantum dot is reported, demonstrating the feasibility of operating single-electron spins in a quantum dot as quantum bits.
References
More filters
Journal ArticleDOI

A Quantum Dot Single-Photon Turnstile Device

TL;DR: Using pulsed laser excitation of a single quantum dot, a single- photon turnstile device that generates a train of single-photon pulses was demonstrated.
Journal ArticleDOI

Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity

TL;DR: The experimental realization of a strongly coupled system in the solid state is reported: a single quantum dot embedded in the spacer of a nanocavity, showing vacuum-field Rabi splitting exceeding the decoherence linewidths of both the nanoc Cavity and the quantum dot.
Journal ArticleDOI

Strong coupling in a single quantum dot–semiconductor microcavity system

TL;DR: The observation of strong coupling of a single two-level solid-state system with a photon, as realized by a single quantum dot in a semiconductor microcavity, may provide a basis for future applications in quantum information processing or schemes for coherent control.
Journal ArticleDOI

The Physical Implementation of Quantum Computation

TL;DR: In this article, the requirements for the physical implementation of quantum computation are discussed, plus two relating to the communication of quantum information are extensively explored and related to the many schemes in atomic physics, quantum optics, nuclear and electron magnetic resonance spectroscopy, superconducting electronics, and quantum-dot physics, for achieving quantum computing.
Related Papers (5)