scispace - formally typeset
F

Frank H. L. Koppens

Researcher at ICFO – The Institute of Photonic Sciences

Publications -  263
Citations -  38897

Frank H. L. Koppens is an academic researcher from ICFO – The Institute of Photonic Sciences. The author has contributed to research in topics: Graphene & Plasmon. The author has an hindex of 69, co-authored 239 publications receiving 32754 citations. Previous affiliations of Frank H. L. Koppens include Kavli Institute of Nanoscience & Harvard University.

Papers
More filters
Journal ArticleDOI

Photodetectors based on graphene, other two-dimensional materials and hybrid systems

TL;DR: An overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of differentTwo-dimensional crystals or of two- dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides are provided.
Journal ArticleDOI

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

Andrea C. Ferrari, +68 more
- 04 Mar 2015 - 
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Journal ArticleDOI

Graphene Plasmonics: A Platform for Strong Light-Matter Interactions

TL;DR: Graphene plasmons have been proposed as a platform for strongly enhanced light-matter interactions in this paper, where the authors predict unprecedented high decay rates of quantum emitters in the proximity of a carbon sheet, observable vacuum Rabi splittings, and extinction cross sections exceeding the geometrical area in graphene nanoribbons and nanodisks.
Journal ArticleDOI

Hybrid graphene-quantum dot phototransistors with ultrahigh gain

TL;DR: A gain of ∼10(8) electrons per photon and a responsivity of ∼ 10(7) A W(-1) in a hybrid photodetector that consists of monolayer or bilayer graphene covered with a thin film of colloidal quantum dots is demonstrated.
Journal ArticleDOI

Optical nano-imaging of gate-tunable graphene plasmons

TL;DR: A successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials, nanoscale optical processing, and strongly enhanced light–matter interactions for quantum devices and biosensing applications.