scispace - formally typeset
Open AccessJournal ArticleDOI

Reduced graphene oxide by chemical graphitization

Reads0
Chats0
TLDR
A novel reducing agent system (hydriodic acid with acetic acid (HI-AcOH) that allows for an efficient, one-pot reduction of a solution-phased RG-O powder and vapour-phasingRG-O (VRG-O) paper and thin film is reported.
Abstract
Reduced graphene oxides (RG-Os) have attracted considerable interest, given their potential applications in electronic and optoelectronic devices and circuits. However, very little is known regarding the chemically induced reduction method of graphene oxide (G-O) in both solution and gas phases, with the exception of the hydrazine-reducing agent, even though it is essential to use the vapour phase for the patterning of hydrophilic G-Os on prepatterned substrates and in situ reduction to hydrophobic RG-Os. In this paper, we report a novel reducing agent system (hydriodic acid with acetic acid (HI-AcOH)) that allows for an efficient, one-pot reduction of a solution-phased RG-O powder and vapour-phased RG-O (VRG-O) paper and thin film. The reducing agent system provided highly qualified RG-Os by mass production, resulting in highly conducting RG-O(HI-AcOH). Moreover, VRG-O(HI-AcOH) paper and thin films were prepared at low temperatures (40 °C) and were found to be applicable to flexible devices. This one-pot method is expected to advance research on highly conducting graphene platelets.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Facile Fabrication of Freestanding Ultrathin Reduced Graphene Oxide Membranes for Water Purification

TL;DR: Freestanding ultrathin rGO membranes, with thicknesses down to 17 nm, are fabricated via a facile approach using hydroiodic acid vapor and water-assisted delamination, providing the potential for addressing the key challenge that limits the performance of current forward osmosis membranes.
Journal ArticleDOI

Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications

TL;DR: This review elucidate FGNs-bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms.
Journal ArticleDOI

Graphene and graphene oxide and their uses in barrier polymers

TL;DR: A review of the state-of-the-art research on the use of graphene, GO, and rGO for barrier applications, including few-layered graphene or its derivatives in coated polymeric films and polymer nanocomposites consisting of chemically exfoliated GO and reduced graphene oxide (rGO) nanosheets, and their gas-barrier properties is presented in this article.
Journal ArticleDOI

Restacking-Inhibited 3D Reduced Graphene Oxide for High Performance Supercapacitor Electrodes

TL;DR: The current study delivers a message that various condensation reactions engaging GO sheets can be a general synthetic approach for restacking-inhibited graphene in scalable solution processes.
References
More filters
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide

TL;DR: In this paper, a colloidal suspension of exfoliated graphene oxide sheets in water with hydrazine hydrate results in their aggregation and subsequent formation of a high surface area carbon material which consists of thin graphene-based sheets.
Journal ArticleDOI

Interpretation of Raman spectra of disordered and amorphous carbon

TL;DR: In this paper, a model and theoretical understanding of the Raman spectra in disordered and amorphous carbon is given, and the nature of the G and D vibration modes in graphite is analyzed in terms of the resonant excitation of \ensuremath{\pi} states and the long-range polarizability of the long range bonding.
Journal ArticleDOI

Graphene-based composite materials

TL;DR: The bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.
Related Papers (5)