scispace - formally typeset
Open AccessJournal ArticleDOI

Reduced graphene oxide by chemical graphitization

Reads0
Chats0
TLDR
A novel reducing agent system (hydriodic acid with acetic acid (HI-AcOH) that allows for an efficient, one-pot reduction of a solution-phased RG-O powder and vapour-phasingRG-O (VRG-O) paper and thin film is reported.
Abstract
Reduced graphene oxides (RG-Os) have attracted considerable interest, given their potential applications in electronic and optoelectronic devices and circuits. However, very little is known regarding the chemically induced reduction method of graphene oxide (G-O) in both solution and gas phases, with the exception of the hydrazine-reducing agent, even though it is essential to use the vapour phase for the patterning of hydrophilic G-Os on prepatterned substrates and in situ reduction to hydrophobic RG-Os. In this paper, we report a novel reducing agent system (hydriodic acid with acetic acid (HI-AcOH)) that allows for an efficient, one-pot reduction of a solution-phased RG-O powder and vapour-phased RG-O (VRG-O) paper and thin film. The reducing agent system provided highly qualified RG-Os by mass production, resulting in highly conducting RG-O(HI-AcOH). Moreover, VRG-O(HI-AcOH) paper and thin films were prepared at low temperatures (40 °C) and were found to be applicable to flexible devices. This one-pot method is expected to advance research on highly conducting graphene platelets.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The reduction of graphene oxide

TL;DR: In this paper, the state-of-the-art status of the reduction of GO on both techniques and mechanisms is reviewed, where the reduction process can partially restore the structure and properties of graphene.
Journal ArticleDOI

Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications

TL;DR: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,† Vimlesh Chandra, Namdong Kim, K. Kim,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim.
Journal ArticleDOI

Graphene-based composites

TL;DR: A critical review of the synthesis methods for graphene and its derivatives as well as their properties and the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, and Raman enhancement are described.
Journal ArticleDOI

Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications

TL;DR: The synthesis, characterization, properties, and applications of graphene-based materials are discussed and the promising properties together with the ease of processibility and functionalization make graphene- based materials ideal candidates for incorporation into a variety of functional materials.
Journal ArticleDOI

Graphene quantum dots derived from carbon fibers.

TL;DR: It is reported that during the acid treatment and chemical exfoliation of traditional pitch-based carbon fibers, that are both cheap and commercially available, the stacked graphitic submicrometer domains of the fibers are easily broken down, leading to the creation of GQDs with different size distribution in scalable amounts.
References
More filters
Journal ArticleDOI

An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder

TL;DR: In this article, an environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder in only 30min was demonstrated. But this method was not suitable for the case of high temperature.
Journal ArticleDOI

Electrochemical Reduction of Oriented Graphene Oxide Films: An in Situ Raman Spectroelectrochemical Study

TL;DR: In this paper, it was shown that the GO can be reduced electrochemically using applied DC bias by scanning the potential from 0 to −1 V vs a saturated calomel electrode in an aqueous electrolyte.
Journal ArticleDOI

Thin Film Fabrication and Simultaneous Anodic Reduction of Deposited Graphene Oxide Platelets by Electrophoretic Deposition

TL;DR: In this article, the deposition of films composed of overlapped and stacked platelets of graphene oxide (G-O) reduced by an electrophoretic deposition (EPD) process was reported.
Journal ArticleDOI

Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques

TL;DR: In this paper, the effects of the interaction of few-layer graphene with electron donor and acceptor molecules have been investigated by employing Raman spectroscopy, and the results compared with those from electrochemical doping.
Related Papers (5)