scispace - formally typeset
Open AccessJournal Article

Release of medroxyprogesterone acetate from a silicone polymer.

T. J. Roseman, +1 more
- 01 Mar 1970 - 
- Vol. 59, Iss: 3
TLDR
In this paper, the physicochemical factors involved in the in vitro release of medroxyprogesterone acetate (MPA) a water-insoluble steroid embedded in a silicone rubber matrix was based upon a model system which considered the matric boundary diffusion layer.
Abstract
A study of the physicochemical factors involved in the in vitro release of medroxyprogesterone acetate (MPA) a water-insoluble steroid embedded in a silicone rubber matrix was based upon a model system which considered the matric boundary diffusion layer; extensive mathematical equations for the model are presented for planar and cylindrical cases. Initial and long-time release rates were obtained. Zones of MPA depletion were measured microscopically as a function of time and the partition coefficient of MPA was determined. Following relatively constant initial release rates a nonlinear dependence of release rates upon MPA concentration (3% 12% 24%) was found. As MPA diffused from the matrix well-defined zones of depletion developed and were photographed. Comparison of the present model to the T. Higuchi model of drug release (based on a purely matrix-controlled system) indicated that when boundary layer was considered a better fit of experimental data to theory was found. Findings suggest that the partition coefficient diffusion coefficients medroxyprogesterone acetate concentration within the polymer and agitation conditions play important roles in the release process. The applicability of the model to an in vivo system (in which slower release of MPA has been observed) is evaluated.

read more

Citations
More filters
Journal ArticleDOI

Sustained release of acetaminophen from a heterogeneous mixture of two hydrophilic non-ionic cellulose ether polymers.

TL;DR: The results of the tablet erosion studies indicated that the amount of APAP released was linearly related to the percentage of tablet weight loss, and the kinetics of tablet water uptake was consistent with a diffusion and stress relaxation mechanism.
Journal ArticleDOI

Absorption from the Vagina

TL;DR: Research on the permeability of the vagina to a wide variety of compounds including steroids, prostaglandins, antimicrobials, proteins, antigens, and hormones, nonoxynol-9, methadone, and inorganic compounds is reviewed.
Journal ArticleDOI

Modelling drug release from inert matrix systems: from moving-boundary to continuous-field descriptions.

TL;DR: This review provides a comprehensive overview of mathematical procedures that can be used to describe the release of drugs from inert matrix systems, and Higuchi-type moving-boundary descriptions continue to be highly valuable for obtaining approximate analytical solutions, especially when coupled with integral balance methods.
Journal ArticleDOI

In vitro and in vivo release of insulin from poly(lactic acid) microbeads and pellets

TL;DR: In animal studies, insulin—PLA preparations, administered subcutaneously as a single injection of microbeads or by implantation of a pellet, lowered the blood glucose levels of chemically induced diabetic rats for more than two weeks.
References
More filters
Journal ArticleDOI

Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices

TL;DR: The analyses suggest that for the latter system the time required to release 50% of the drug would normally be expected to be approximately 10 per cent of that required to dissolve the last trace of the solid drug phase in the center of the pellet.
Book

Membrane Technology and Applications

TL;DR: Overview of membrane science and technology membrane transport theory membrane and modules concentration polarization reverse osmosis ultrafiltration microfiltration gas separation pervaporation ion exchange membrane processes - electrodialysis carrier facilitated transport medical applications of membranes other membranes processed.
Journal ArticleDOI

A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs

TL;DR: In this paper, a simple exponential relation Mt/M∞ = ktn is introduced to describe the general solute release behavior of controlled release polymeric devices, where Mt is the fractional release, t is the release time, k is a constant, and n is the diffusional exponent characteristic of the release mechanism.
Book

Diffusion in polymers

Related Papers (5)