scispace - formally typeset
Journal ArticleDOI

Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products

Reads0
Chats0
TLDR
This Perspective provides a contemporary understanding of the shape evolution of colloidal metal nanocrystals under thermodynamically and kinetically controlled conditions and extends the mechanistic insights learnt to account for the products of conventional one-pot syntheses that involve self-nucleation only.
Abstract
This Perspective provides a contemporary understanding of the shape evolution of colloidal metal nanocrystals under thermodynamically and kinetically controlled conditions. It has been extremely challenging to investigate this subject in the setting of one-pot synthesis because both the type and number of seeds involved would be changed whenever the experimental conditions are altered, making it essentially impossible to draw conclusions when comparing the outcomes of two syntheses conducted under different conditions. Because of the uncertainty about seeds, most of the mechanistic insights reported in literature for one-pot syntheses of metal nanocrystals with different shapes are either incomplete or ambiguous, and some of them might be misleading or even wrong. Recently, with the use of well-defined seeds for such syntheses, it became possible to separate growth from nucleation and therefore investigate the explicit role(s) played by a specific thermodynamic or kinetic parameter in directing the evolution of colloidal metal nanocrystals into a specific shape. Starting from single-crystal seeds enclosed by a mix of {100}, {111}, and {110} facets, for example, one can obtain colloidal nanocrystals with diversified shapes by adjusting various thermodynamic or kinetic parameters. The mechanistic insights learnt from these studies can also be extended to account for the products of conventional one-pot syntheses that involve self-nucleation only. The knowledge can be further applied to many other types of seeds with twin defects or stacking faults, making it an exciting time to design and synthesize colloidal metal nanocrystals with the shapes sought for a variety of fundamental studies and technologically important applications.

read more

Citations
More filters
Journal ArticleDOI

Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials

TL;DR: This review discusses efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions, and explores the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies.
Journal ArticleDOI

Bimetallic Nanocrystals: Syntheses, Properties, and Applications

TL;DR: A comprehensive review of recent research activities on bimetallic nanocrystals, featuring key examples from the literature that exemplify critical concepts and place a special emphasis on mechanistic understanding.
Journal ArticleDOI

Polyvinylpyrrolidone (PVP) in nanoparticle synthesis

TL;DR: The concluding guidelines provided herein should enable new nanostructures to be accessed facilely, and the properties of PVP-capped NPs for surface enhanced Raman spectroscopy (SERS), assembly, catalysis, and more are discussed.
Journal ArticleDOI

Catalysis by Supported Single Metal Atoms

TL;DR: In this article, the authors discuss the most recent advances in preparing, characterizing, and catalytically testing SACs with a focus on correlating the structural perspective of the anchored single metal atoms to the observed catalytic performances.
Journal Article

Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories

TL;DR: In this article, the authors used in situ transmission electron microscopy to show that platinum nanocrystals can grow either by monomer attachment from solution onto the existing particles or by coalescence between the particles.
References
More filters
Journal ArticleDOI

Chemistry and properties of nanocrystals of different shapes.

TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Journal ArticleDOI

Localized Surface Plasmon Resonance Spectroscopy and Sensing

TL;DR: This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size and introduces a new form of L SPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances.
Journal ArticleDOI

Shape‐Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?

TL;DR: A comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals, including a brief introduction to nucleation and growth within the context of metal Nanocrystal synthesis, followed by a discussion of the possible shapes that aMetal nanocrystal might take under different conditions.
Journal ArticleDOI

Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method

TL;DR: In this article, a method was used for preparing gold NRs with aspect ratios ranging from 1.5 to 4.5 for which the surface plasmon absorption maxima are between 600 and 1300 nm.
Reference BookDOI

Handbook of Heterogeneous Catalysis

TL;DR: This paper presents a meta-modelling system that automates the very labor-intensive and therefore time-heavy and therefore expensive and expensive process of characterization and activation of Solid Catalysts.
Related Papers (5)