scispace - formally typeset
Journal ArticleDOI

Side Chain Engineering on Medium Bandgap Copolymers to Suppress Triplet Formation for High-Efficiency Polymer Solar Cells.

Reads0
Chats0
TLDR
It is demonstrated difluoro-substitution of thiophene conjugated side chain on donor polymer can suppress triplet formation for reducing carrier recombination and indicates that side chain engineering can provide a new solution to suppress carrier recombinations toward high efficiency.
Abstract
Suppression of carrier recombination is critically important in realizing high-efficiency polymer solar cells. Herein, it is demonstrated difluoro-substitution of thiophene conjugated side chain on donor polymer can suppress triplet formation for reducing carrier recombination. A new medium bandgap 2D-conjugated D-A copolymer J91 is designed and synthesized with bi(alkyl-difluorothienyl)-benzodithiophene as donor unit and fluorobenzotriazole as acceptor unit, for taking the advantages of the synergistic fluorination on the backbone and thiophene side chain. J91 demonstrates enhanced absorption, low-lying highest occupied molecular orbital energy level, and higher hole mobility, in comparison with its control polymer J52 without fluorination on the thiophene side chains. The transient absorption spectra indicate that J91 can suppress the triplet formation in its blend film with n-type organic semiconductor acceptor m-ITIC (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(3-hexylphenyl)-dithieno[2,3-d:2,3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene). With these favorable properties, a higher power conversion efficiency of 11.63% with high VOC of 0.984 V and high JSC of 18.03 mA cm-2 is obtained for the polymer solar cells based on J91/m-ITIC with thermal annealing. The improved photovoltaic performance by thermal annealing is explained from the morphology change upon thermal annealing as revealed by photoinduced force microscopy. The results indicate that side chain engineering can provide a new solution to suppress carrier recombination toward high efficiency, thus deserves further attention.

read more

Citations
More filters
Journal ArticleDOI

A three-dimensional thiophene-annulated perylene bisimide as a fullerene-free acceptor for a high performance polymer solar cell with the highest PCE of 8.28% and a VOC over 1.0 V

TL;DR: In this article, a propeller-shaped small-molecule acceptor of BPT-S with S-annulated perylene bisimide (PBI) as peripheral groups was designed and synthesized.
Journal ArticleDOI

Molecular engineering of acceptors to control aggregation for optimized nonfullerene solar cells

TL;DR: In this article, dual molecular engineering of alkyl side chains and halogen accepting ends of asymmetric fused-ring acceptors has been proposed for controlling aggregation for optimized organic solar cells (OSCs).
Journal ArticleDOI

Achieving Balanced Charge Transport and Favorable Blend Morphology in Non-Fullerene Solar Cells via Acceptor End Group Modification

TL;DR: In this article, a new end-capping group (EG) was reported, namely 5-fluoro-6-methyl-3-dicycanovinylindan-1-one (CFDCI), which simultaneously possesses an electron-withdrawing fluorine substitute and an electrondonating methyl group.
Journal ArticleDOI

Effect of Side-Chain Engineering of Bithienylbenzodithiophene-alt-fluorobenzotriazole-Based Copolymers on the Thermal Stability and Photovoltaic Performance of Polymer Solar Cells

TL;DR: Wang et al. as discussed by the authors designed and synthesized three new 2D-conjugated polymers J62, J63, and J64 with different types of side chains to further investigate the effect of side chain on their physicochemical and photovoltaic properties.
References
More filters
Journal ArticleDOI

Polymer photovoltaic cells : enhanced efficiencies via a network of internal donor-acceptor heterojunctions

TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Journal ArticleDOI

Polymer–Fullerene Composite Solar Cells

TL;DR: Polymer-based organic photovoltaic systems hold the promise for a cost-effective, lightweight solar energy conversion platform, which could benefit from simple solution processing of the active layer.
Journal ArticleDOI

Polymer solar cells

TL;DR: In this article, a review summarizes recent progress in the development of polymer solar cells and provides a synopsis of major achievements in the field over the past few years, while potential future developments and the applications of this technology are also briefly discussed.
Journal ArticleDOI

Synthesis of Conjugated Polymers for Organic Solar Cell Applications

TL;DR: Fluorene-Based Copolymers ContainingPhosphorescent Complexes and Carbazole-Based Conjugated Polymers R5.1.3.
Journal ArticleDOI

An electron acceptor challenging fullerenes for efficient polymer solar cells.

TL;DR: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized.
Related Papers (5)