scispace - formally typeset
Open AccessJournal ArticleDOI

Special quasirandom structures.

Alex Zunger, +3 more
- 16 Jul 1990 - 
- Vol. 65, Iss: 3, pp 353-356
TLDR
It is shown that it is possible to design special quasirandom structures'' (SQS) that mimic for small {ital N} the first few, physically most relevant radial correlation functions of a perfectly random structure far better than the standard technique does.
Abstract
Structural models used in calculations of properties of substitutionally random ${\mathit{A}}_{1\mathrm{\ensuremath{-}}\mathit{x}}$${\mathit{B}}_{\mathit{x}}$ alloys are usually constructed by randomly occupying each of the N sites of a periodic cell by A or B. We show that it is possible to design ``special quasirandom structures'' (SQS's) that mimic for small N (even N=8) the first few, physically most relevant radial correlation functions of a perfectly random structure far better than the standard technique does. We demonstrate the usefulness of these SQS's by calculating optical and thermodynamic properties of a number of semiconductor alloys in the local-density formalism.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Phonons and related crystal properties from density-functional perturbation theory

TL;DR: In this paper, the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudopotential method, is reviewed.
Journal ArticleDOI

Microstructures and properties of high-entropy alloys

TL;DR: The concept of high entropy introduces a new path of developing advanced materials with unique properties, which cannot be achieved by the conventional micro-alloying approach based on only one dominant element as mentioned in this paper.
Journal ArticleDOI

Halide perovskite materials for solar cells: a theoretical review

TL;DR: In this article, the structural, electrical, and optical properties of halide perovskite materials in relation to their applications in solar cells are summarized and discussed, along with possible theoretical solutions.
Journal ArticleDOI

Efficient stochastic generation of special quasirandom structures

TL;DR: The proposed method optimizes the shape of the supercell jointly with the occupation of the atomic sites, thus ensuring that the configurational space searched is exhaustive and not biased by a pre-specified supercell shape.
Journal ArticleDOI

Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes

TL;DR: It is shown that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials, which lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs).
Related Papers (5)