scispace - formally typeset
Journal ArticleDOI

Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes

Reads0
Chats0
TLDR
It is shown that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials, which lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs).
Abstract
Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle1–3. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening4,5, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs)6–10. The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength–ductility trade-off11. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs12, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank–Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations13 do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials. Ordered oxygen complexes in high-entropy alloys enhance both strength and ductility in these compositionally complex solid solutions.

read more

Citations
More filters
Journal ArticleDOI

High-entropy alloys

TL;DR: This Review discusses model high-entropy alloys with interesting properties, the physical mechanisms responsible for their behaviour and fruitful ways to probe and discover new materials in the vast compositional space that remains to be explored.
Journal ArticleDOI

High entropy alloys: A focused review of mechanical properties and deformation mechanisms

TL;DR: In this article, the authors provide a detailed review of the deformation mechanisms of HEAs with the complex concentrated alloys (CCAs) with the FCC and BCC structures, highlighting both successes and limitations.
Journal ArticleDOI

Tuning element distribution, structure and properties by composition in high-entropy alloys.

TL;DR: Atomic-resolution chemical mapping reveals deformation mechanisms in the CrFeCoNiPd alloy that are promoted by pronounced fluctuations in composition and an increase in stacking-fault energy, leading to higher yield strength without compromising strain hardening and tensile ductility.
Journal ArticleDOI

Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys

TL;DR: In this paper, the authors review the principal mechanical properties of multi-principal element alloys with emphasis on the face-centered cubic systems, such as the CrCoNi-based alloys, and suggest their favorable mechanical properties and ease of processing by conventional means suggest extensive utilization in many future structural applications.
Journal ArticleDOI

Mechanical behavior of high-entropy alloys

TL;DR: In this article, the authors present a comprehensive, critical review of the mechanical behavior of high-entropy alloys and some closely related topics, including thermodynamics and kinetics.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Journal ArticleDOI

High-precision sampling for Brillouin-zone integration in metals

TL;DR: Presentation d'une methode d'echantillonnage pour l'integration de la zone de Brillouin qui converge exponentiellement avec le nombre de points d’echant Dillonnage, sans perte de precision des techniques d'elargissement (broadening).
Related Papers (5)