scispace - formally typeset
Open AccessJournal ArticleDOI

Stellar Feedback in Galaxies and the Origin of Galaxy-scale Winds

Reads0
Chats0
TLDR
In this paper, the authors have introduced new numerical methods for implementing stellar feedback on sub-GMC through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the UV through IR, supernovae (Type-I & II), stellar winds (fast O star through “slow” AGB winds), and HII photoionization.
Abstract
Feedback from massive stars is believed to play a critical role in driving galactic superwinds that enrich the intergalactic medium and shape the galaxy mass function, massmetallicity relation, and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-GMC through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the UV through IR, supernovae (Type-I & II), stellar winds (“fast” O star through “slow” AGB winds), and HII photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as 10 20 times the galaxy star formation rate. The mass-loading efficiency (wind mass loss rate divided by the star formation rate) scales roughly as _ Mwind= _ M / V 1 c (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from SMC-like dwarfs and Milky-way analogues to z 2 clumpy disks. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multi-phase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial and time scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass-loading and velocities as a function of galaxy properties, for use in cosmological simulations and semi-analytic models. These differ from typically-adopted formulae with an explicit dependence on the gas surface density that can be very important in both low-density dwarf galaxies and high-density gas-rich galaxies.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Cosmic Star-Formation History

TL;DR: In this article, the authors review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch.
Journal ArticleDOI

Cosmic Star Formation History

TL;DR: In this paper, the authors review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch.
Journal ArticleDOI

Massive molecular outflows and evidence for AGN feedback from CO observations

TL;DR: In this paper, the authors studied the properties of massive, galactic-scale outflows of molecular gas and investigated their impact on galaxy evolution, finding that the presence of an active galactic nucleus (AGN) can boost the outflow rate by a large factor, which is found to increase with the L-AGN/L-bol ratio.
References
More filters
Journal ArticleDOI

The Cosmological simulation code GADGET-2

TL;DR: GADGET-2 as mentioned in this paper is a massively parallel tree-SPH code, capable of following a collisionless fluid with the N-body method, and an ideal gas by means of smoothed particle hydrodynamics.
Journal ArticleDOI

The Global Schmidt law in star forming galaxies

TL;DR: In this paper, the Schmidt law was used to model the global star formation law over the full range of gas densities and star formation rates observed in galaxies, and the results showed that the SFR scales with the ratio of the gas density to the average orbital timescale.
Journal ArticleDOI

The Global Schmidt Law in Star Forming Galaxies

TL;DR: In this paper, the Schmidt law was used to model the global star formation law, over the full range of gas densities and star formation rates (SFRs) observed in galaxies.
Journal ArticleDOI

Starburst99: Synthesis Models for Galaxies with Active Star Formation

TL;DR: Starburst99 as mentioned in this paper is a comprehensive set of model predictions for spectrophotometric and related properties of galaxies with active star formation, which is an improved and extended version of the data set previously published by Leitherer & Heckman.
Related Papers (5)