scispace - formally typeset
Journal ArticleDOI

The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material

TLDR
The residual defects and groups in chemically reduced graphene oxide cannot not only improve the impedance match characteristic and prompt energy transition from contiguous states to Fermi level, but also introduce defect polarization relaxation and groups' electronic dipole relaxation, which are all in favor of electromagnetic wave penetration and absorption as mentioned in this paper.
Abstract
The residual defects and groups in chemically reduced graphene oxide cannot only improve the impedance match characteristic and prompt energy transition from contiguous states to Fermi level, but also introduce defect polarization relaxation and groups’ electronic dipole relaxation, which are all in favor of electromagnetic wave penetration and absorption The chemically reduced graphene oxide shows enhanced microwave absorption compared with graphite and carbon nanotubes, and can be expected to display better absorption than high quality graphene, exhibiting a promising prospect as microwave absorbing material

read more

Citations
More filters
Journal ArticleDOI

Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites.

TL;DR: By considering good chemical homogeneity and microwave absorption, it is believed the as-fabricated Fe3O4@C composites can be promising candidates as highly effective microwave absorbers.
Journal ArticleDOI

Laminated magnetic graphene with enhanced electromagnetic wave absorption properties

TL;DR: In this paper, the authors reported a facile solvothermal route to synthesize laminated magnetic graphene and showed that there have significant changes in the electromagnetic properties of magnetic graphene when compared with pure graphene.
Journal ArticleDOI

Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride.

TL;DR: The results indicated that the RGO/MnFe2O4/PVDF composites show the most excellent wave absorption properties, and the wave absorbing mechanism can be attributed to the dielectric loss, magnetic loss and the synergetic effect between RGO+Mn Fe 2O4, RGO-PV DF and MnFe2 O4+PvDF.
Journal ArticleDOI

Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption

TL;DR: In this article, a cubic framework of amorphous carbon and uniformly dispersed core-shell Fe@graphitic carbon nanoparticles is used to construct a high-performance microwave absorber.
Journal ArticleDOI

Graphene-based microwave absorbing composites: A review and prospective

TL;DR: In this article, the authors introduce the theory of microwave absorption and summarize recent advances in the fabrication of graphene-based MAMs, including rational design of the microstructure of pure graphene and tunable chemical integrations with polymers, magnetic metals, ferrites, ceramics, and multicomponents composites.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide

TL;DR: In this paper, a colloidal suspension of exfoliated graphene oxide sheets in water with hydrazine hydrate results in their aggregation and subsequent formation of a high surface area carbon material which consists of thin graphene-based sheets.
Journal ArticleDOI

Graphene-based composite materials

TL;DR: The bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.
Journal ArticleDOI

A perfectly matched layer for the absorption of electromagnetic waves

TL;DR: Numerical experiments and numerical comparisons show that the PML technique works better than the others in all cases; using it allows to obtain a higher accuracy in some problems and a release of computational requirements in some others.
Journal ArticleDOI

Processable aqueous dispersions of graphene nanosheets

TL;DR: It is reported that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization, making it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.
Related Papers (5)