scispace - formally typeset
Open AccessJournal ArticleDOI

The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin.

TLDR
It is proposed that tobramycin sequestration at the biofilm periphery is an important mechanism in protecting metabolically active cells that lie just below the zone of sequestration.
Abstract
Biofilm cells are less susceptible to antimicrobials than their planktonic counterparts. While this phenomenon is multifactorial, the ability of the matrix to reduce antibiotic penetration into the biofilm is thought to be of limited importance studies suggest that antibiotics move fairly rapidly through biofilms. In this study, we monitored the transport of two clinically relevant antibiotics, tobramycin and ciprofloxacin, into non-mucoid Pseudomonas aeruginosa biofilms. To our surprise, we found that the positively charged antibiotic tobramycin is sequestered to the biofilm periphery, while the neutral antibiotic ciprofloxacin readily penetrated. We provide evidence that tobramycin in the biofilm periphery both stimulated a localized stress response and killed bacteria in these regions but not in the underlying biofilm. Although it is unclear which matrix component binds tobramycin, its penetration was increased by the addition of cations in a dose-dependent manner, which led to increased biofilm death. These data suggest that ionic interactions of tobramycin with the biofilm matrix limit its penetration. We propose that tobramycin sequestration at the biofilm periphery is an important mechanism in protecting metabolically active cells that lie just below the zone of sequestration.

read more

Citations
More filters
Journal ArticleDOI

Alginate oligosaccharides enhance diffusion and activity of colistin in a mucin-rich environment

TL;DR: In this article , a 2-compartment Transwell model was developed to study impaired diffusion of the antibiotic colistin across an artificial sputum (AS) matrix/medium and to quantify its antimicrobial activity against Pseudomonas aeruginosa NH57388A biofilms (alone and in combination with mucolytic therapy).
Journal ArticleDOI

Efficacy of a ciprofloxacin/amikacin combination against planktonic and biofilm cultures of susceptible and low-level resistant Pseudomonas aeruginosa.

TL;DR: The ciprofloxacin/amikacin combination prevented the emergence of resistant mutants in low-level resistant strains in planktonic cultures and biofilm persister cells were not eradicated, either with monotherapy or with the combination.
Journal ArticleDOI

MacAB-TolC Contributes to the Development of Acinetobacter baumannii Biofilm at the Solid–Liquid Interface

TL;DR: To unravel critical determinants of this sessile lifestyle, the proteomic profiles of two A. baumannii strains grown in planktonic stationary phase or in mature solid–liquid (S-L) biofilm were compared and this efflux pump appeared to be involved in the envelope stress response occurring in mature biofilm.
Journal ArticleDOI

Liquid crystal nanoparticle platform for increased efficacy of cationic antimicrobials against biofilm infections.

TL;DR: In this article , liquid crystal nanoparticles (LCNPs) were used to improve the efficacy of tobramycin in biofilm-related infections by increasing the penetration of antibiotics across the biofilm matrix.
Journal ArticleDOI

Neutralization of ionic interactions by dextran-based single-chain nanoparticles improves tobramycin diffusion into a mature biofilm

TL;DR: In this article , the authors combine the charge neutralization of tobramycin provided by dextran-based single-chain polymer nanoparticles (SCPNs) together with DNase I to break the biofilm matrix.
References
More filters
Journal ArticleDOI

Bacterial biofilms : A common cause of persistent infections

TL;DR: Improvements in understanding of the genetic and molecular basis of bacterial community behavior point to therapeutic targets that may provide a means for the control of biofilm infections.
Journal ArticleDOI

A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria

TL;DR: In this paper, a new vector strategy for the insertion of foreign genes into the genomes of gram negative bacteria not closely related to Escherichia coli was developed, which can utilize any gram negative bacterium as a recipient for conjugative DNA transfer.
Journal ArticleDOI

The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms

TL;DR: Minimal biofilm eradication concentrations, derived by using the Calgary Biofilm Device, demonstrated that for biofilms of the same organisms, 100 to 1,000 times the concentration of a certain antibiotic were often required for the antibiotic to be effective, while other antibiotics were found to beeffective at the MICs.
Journal ArticleDOI

Common virulence factors for bacterial pathogenicity in plants and animals

TL;DR: A Pseudomonas aeruginosa strain (UCBPP-PA14) is infectious both in an Arabidopsis thaliana leaf infiltration model and in a mouse full-thickness skin burn model, indicating that these genes encode virulence factors required for the full expression of pathogenicity in both plants and animals.
Journal ArticleDOI

Mechanisms of antibiotic resistance in bacterial biofilms.

TL;DR: Disabling biofilm resistance may enhance the ability of existing antibiotics to clear infections involving biofilms that are refractory to current treatments.
Related Papers (5)