scispace - formally typeset
Open AccessJournal ArticleDOI

The Global Schmidt law in star forming galaxies

Reads0
Chats0
TLDR
In this paper, the Schmidt law was used to model the global star formation law over the full range of gas densities and star formation rates observed in galaxies, and the results showed that the SFR scales with the ratio of the gas density to the average orbital timescale.
Abstract
Measurements of Hα, H I, and CO distributions in 61 normal spiral galaxies are combined with published far-infrared and CO observations of 36 infrared-selected starburst galaxies, in order to study the form of the global star formation law over the full range of gas densities and star formation rates (SFRs) observed in galaxies. The disk-averaged SFRs and gas densities for the combined sample are well represented by a Schmidt law with index N = 1.4 ± 0.15. The Schmidt law provides a surprisingly tight parametrization of the global star formation law, extending over several orders of magnitude in SFR and gas density. An alternative formulation of the star formation law, in which the SFR is presumed to scale with the ratio of the gas density to the average orbital timescale, also fits the data very well. Both descriptions provide potentially useful "recipes" for modeling the SFR in numerical simulations of galaxy formation and evolution.

read more

Citations
More filters
Journal ArticleDOI

The stellar initial mass function in early-type galaxies from absorption line spectroscopy. ii. results

TL;DR: In this article, a population synthesis model that accounts for the effect of variable abundance ratios of 11 elements was proposed to analyze very high quality absorption line spectra of 38 early-type galaxies and the nuclear bulge of M31.
Journal ArticleDOI

Compaction and quenching of high-z galaxies in cosmological simulations: blue and red nuggets

TL;DR: In this article, the authors used cosmological simulations to study a characteristic evolution pattern of high-redshift galaxies, which is consistent with the way galaxies populate the SFR-size-mass space, and with gradients and scatter across the main sequence.
Journal ArticleDOI

The atomic-to-molecular transition in galaxies. ii: h i and h2 column densities

TL;DR: In this paper, the authors used the model of H2 formation, dissociation, and shielding developed in the previous paper in this series to make theoretical predictions for atomic-to-molecular ratios as a function of galactic properties.
Journal ArticleDOI

Toward a complete accounting of energy and momentum from stellar feedback in galaxy formation simulations

TL;DR: In this paper, the authors investigate the momentum and energy budget of stellar feedback during different stages of stellar evolution, and study its impact on the interstellar medium (ISM) using simulations of local star-forming regions and galactic disks at the resolution affordable in modern cosmological zoom-in simulations.
Journal ArticleDOI

A radio counterpart to a neutron star merger

TL;DR: In this paper, the authors reported the detection of a counterpart radio source that appears 16 days after the GW170817 binary neutron star merger event, allowing them to diagnose the energetics and environment of the merger.
References
More filters
Book

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei

TL;DR: In this paper, a comparison of theory with observations internal dynamics of gaseous nebulae interstellar dust H II regions in the galactic context is presented. But the results are limited to the case of active galactic nuclei.
Journal ArticleDOI

Luminous infrared galaxies

TL;DR: At the highest luminosities (Lir > 1012 ), nearly all objects appear to be advanced mergers powered by a mixture of circumnuclear starburst and active galactic nucleus energy sources, both of which are fueled by an enormous concentration of molecular gas that has been funneled into the merger nucleus as discussed by the authors.
Journal ArticleDOI

A survey of interstellar H I from L-alpha absorption measurements. II

TL;DR: The Copernicus satellite surveyed the spectral region near L alpha to obtain column densities of interstellar HI toward 100 stars as discussed by the authors, and the value of the mean ratio of total neutral hydrogen to color excess was found to equal 5.8 x 10 to the 21st power atoms per (sq cm x mag).
Journal ArticleDOI

The Rate of Star Formation

Journal ArticleDOI

The Star Formation Law in Galactic Disks

TL;DR: In this article, the dependence of the massive star formation rate (SFR) on the density and dynamics of the interstellar gas was investigated in 15 galaxies and the relationship between the SFR and gas surface density was defined.
Related Papers (5)