scispace - formally typeset
Open AccessJournal ArticleDOI

The Global Schmidt law in star forming galaxies

Reads0
Chats0
TLDR
In this paper, the Schmidt law was used to model the global star formation law over the full range of gas densities and star formation rates observed in galaxies, and the results showed that the SFR scales with the ratio of the gas density to the average orbital timescale.
Abstract
Measurements of Hα, H I, and CO distributions in 61 normal spiral galaxies are combined with published far-infrared and CO observations of 36 infrared-selected starburst galaxies, in order to study the form of the global star formation law over the full range of gas densities and star formation rates (SFRs) observed in galaxies. The disk-averaged SFRs and gas densities for the combined sample are well represented by a Schmidt law with index N = 1.4 ± 0.15. The Schmidt law provides a surprisingly tight parametrization of the global star formation law, extending over several orders of magnitude in SFR and gas density. An alternative formulation of the star formation law, in which the SFR is presumed to scale with the ratio of the gas density to the average orbital timescale, also fits the data very well. Both descriptions provide potentially useful "recipes" for modeling the SFR in numerical simulations of galaxy formation and evolution.

read more

Citations
More filters
Journal ArticleDOI

A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34

Dominik Riechers, +81 more
- 18 Apr 2013 - 
TL;DR: Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.
Journal ArticleDOI

Star Formation in NGC 5194 (M51a). II. The Spatially Resolved Star Formation Law

TL;DR: In this article, the Schmidt power law was used to study the relationship between the star formation rate (SFR), surface density, and gas surface density in the spiral galaxy M51a (NGC 5194), using multiwavelength data obtained as part of the Spitzer Infrared Nearby Galaxies Survey (SINGS).
Journal ArticleDOI

Cosmological simulations of intergalactic medium enrichment from galactic outflows

TL;DR: In this article, the authors investigate models of self-consistent chemical enrichment of the intergalactic medium from z = 6.0 → 1.5, based on hydrodynamic simulations of structure formation that explicitly incorporate outflows from star-forming galaxies.
Journal ArticleDOI

The Star Formation Rate of Turbulent Magnetized Clouds: Comparing Theory, Simulations, and Observations

TL;DR: In this paper, the role of turbulence and magnetic fields in star formation in molecular clouds is studied, and it is shown that the SFR depends on four basic parameters: (1) virial parameter αvir; (2) sonic Mach number ; (3) turbulent forcing parameter b, which is a measure for the fraction of energy driven in compressive modes; and (4) plasma with the Alfven Mach number.
References
More filters
Book

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei

TL;DR: In this paper, a comparison of theory with observations internal dynamics of gaseous nebulae interstellar dust H II regions in the galactic context is presented. But the results are limited to the case of active galactic nuclei.
Journal ArticleDOI

Luminous infrared galaxies

TL;DR: At the highest luminosities (Lir > 1012 ), nearly all objects appear to be advanced mergers powered by a mixture of circumnuclear starburst and active galactic nucleus energy sources, both of which are fueled by an enormous concentration of molecular gas that has been funneled into the merger nucleus as discussed by the authors.
Journal ArticleDOI

A survey of interstellar H I from L-alpha absorption measurements. II

TL;DR: The Copernicus satellite surveyed the spectral region near L alpha to obtain column densities of interstellar HI toward 100 stars as discussed by the authors, and the value of the mean ratio of total neutral hydrogen to color excess was found to equal 5.8 x 10 to the 21st power atoms per (sq cm x mag).
Journal ArticleDOI

The Rate of Star Formation

Journal ArticleDOI

The Star Formation Law in Galactic Disks

TL;DR: In this article, the dependence of the massive star formation rate (SFR) on the density and dynamics of the interstellar gas was investigated in 15 galaxies and the relationship between the SFR and gas surface density was defined.
Related Papers (5)