scispace - formally typeset
Open AccessJournal ArticleDOI

The impact of future climate change on West African crop yields: What does the recent literature say?

TLDR
In this paper, a meta-database of future crop yields, built up from 16 recent studies, is used to provide an overall assessment of the potential impact of climate change on yields, and to analyze sources of uncertainty.
Abstract
In West Africa, agriculture, mainly rainfed, is a major economic sector and the one most vulnerable to climate change. A meta-database of future crop yields, built up from 16 recent studies, is used to provide an overall assessment of the potential impact of climate change on yields, and to analyze sources of uncertainty. Despite a large dispersion of yield changes ranging from -50% to +90%, the median is a yield loss near -11%. This negative impact is assessed by both empirical and process-based crop models whereas the Ricardian approach gives very contrasted results, even within a single study. The predicted impact is larger in northern West Africa (Sudano-Sahelian countries, -18% median response) than in southern West Africa (Guinean countries, -13%) which is likely due to drier and warmer projections in the northern part of West Africa. Moreover, negative impacts on crop productivity increase in severity as warming intensifies, with a median yield loss near -15% with most intense warming, highlighting the importance of global warming mitigation. The consistently negative impact of climate change results mainly from the temperature whose increase projected by climate models is much larger relative to precipitation change. However, rainfall changes, still uncertain in climate projections, have the potential to exacerbate or mitigate this impact depending on whether rainfall decreases or increases. Finally, results highlight the pivotal role that the carbon fertilization effect may have on the sign and amplitude of change in crop yields. This effect is particularly strong for a high carbon dioxide concentration scenario and for C3 crops (e.g. soybean, cassava). As staple crops are mainly C4 (e.g. maize, millet, sorghum) in WA, this positive effect is less significant for the region. (C) 2011 Elsevier Ltd. All rights reserved.

read more

Content maybe subject to copyright    Report

Citations
More filters

Impacts of 1.5°C Global Warming on Natural and Human Systems

Ove Hoegh-Guldberg, +86 more
TL;DR: In this article, the authors present a survey of women's sportswriters in South Africa and Ivory Coast, including: Marco Bindi (Italy), Sally Brown (UK), Ines Camilloni (Argentina), Arona Diedhiou (Ivory Coast/Senegal), Riyanti Djalante (Japan/Indonesia), Kristie L. Ebi (USA), Francois Engelbrecht (South Africa), Joel Guiot (France), Yasuaki Hijioka (Japan), Shagun Mehrotra (USA/India), Ant
Journal ArticleDOI

Climate change impacts on crop productivity in Africa and South Asia

TL;DR: The authors assessed the projected impacts of climate change on the yield of eight major crops in Africa and South Asia using a systematic review and meta-analysis of data in 52 original publications from an initial screen of 1144 studies.
Journal ArticleDOI

Climate change impacts in Sub-Saharan Africa: from physical changes to their social repercussions

TL;DR: In this article, climate change projections for this region point to a warming trend, particularly in the inland subtropics; frequent occurrence of extreme heat events; increasing aridity; and changes in rainfall, with a particularly pronounced decline in southern Africa and an increase in East Africa.
Journal ArticleDOI

Is Cassava the Answer to African Climate Change Adaptation

TL;DR: It is concluded that cassava is potentially highly resilient to future climatic changes and could provide Africa with options for adaptation whilst other major food staples face challenges.
References
More filters

Climate change 2007: the physical science basis

TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.
Book

Climate change 2007 : the physical science basis : contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

Susan Solomon
TL;DR: In this article, the authors present a historical overview of climate change science, including changes in atmospheric constituents and radiative forcing, as well as changes in snow, ice, and frozen ground.
Journal ArticleDOI

Prioritizing Climate Change Adaptation Needs for Food Security in 2030

TL;DR: Results indicate South Asia and Southern Africa as two regions that, without sufficient adaptation measures, will likely suffer negative impacts on several crops that are important to large food-insecure human populations.
Related Papers (5)