scispace - formally typeset
Journal ArticleDOI

Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity.

Reads0
Chats0
TLDR
By measuring the resonant wavelength of a two-dimensional photonic crystal microcavity, a time-resolved sensing capability is demonstrated that can detect the change in refractive index of 0.002.
Abstract
We report an experimental demonstration of an ultracompact biochemical sensor based on a two-dimensional photonic crystal microcavity. The microcavity, fabricated on a silicon-on-insulator substrate, is designed to have a resonant wavelength (λ) near 1.5 µm. The transmission spectrum of the sensor is measured with different ambient refractive indices ranging from n=1.0 to n=1.5. From observation of the shift in resonant wavelength, a change in ambient refractive index of Δn=0.002 is readily apparent. The correspondence between absolute refractive index and resonant wavelength agrees with numerical calculation to within 4% accuracy. The evaporation of water in a 5% glycerol mixture is also used to demonstrate the capability for in situ time-resolved sensing.

read more

Citations
More filters
Journal ArticleDOI

High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing

TL;DR: To the best of the knowledge, this is the first PhC single nanobeam geometry that features both high Q-factors and high sensitivity, and is potentially an ideal platform for realizing ultracompact lab-on-a-chip applications with dense arrays of functionalized spots for multiplexed sensing.
Journal ArticleDOI

Scalable photonic crystal chips for high sensitivity protein detection

TL;DR: This work designed and demonstrated that photonic crystal sensor chips have high sensitivity for protein detection and can be mass-produced with scalable deep-UV lithography, and demonstrated label-free detection of carcinoembryonic antigen from pg/mL to μg/mL.
Journal ArticleDOI

All-silicon integrated Fabry―Pérot cavity for volume refractive index measurement in microfluidic systems

TL;DR: In this article, the authors reported a refractive index (RI) sensor based on the use of vertically etched silicon Bragg reflectors, which is robust and performs measurements through tens of micrometers of liquid.
Journal ArticleDOI

Self-Assembly of Block Copolymers for Photonic-Bandgap Materials

TL;DR: In this article, an overview of photonic-bandgap materials enabled by self-assembled block copolymers and discusses the morphology and photonic properties of block-copolymer-based photonic crystals containing nanocomposite additives.
Journal ArticleDOI

Optimization of photonic crystal cavity for chemical sensing.

TL;DR: It is shown that the heterostructure created in the slotted waveguide of thin PhC slab shows better sensitivity of 512 nm/RIU owing to strong confinement of electric field in the low-index region.
References
More filters
Book

CRC Handbook of Chemistry and Physics

TL;DR: CRC handbook of chemistry and physics, CRC Handbook of Chemistry and Physics, CRC handbook as discussed by the authors, CRC Handbook for Chemistry and Physiology, CRC Handbook for Physics,
Journal ArticleDOI

Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis

TL;DR: A fully-vectorial, three-dimensional algorithm to compute the definite-frequency eigenstates of Maxwell's equations in arbitrary periodic dielectric structures, including systems with anisotropy or magnetic materials, using preconditioned block-iterative eigensolvers in a planewave basis is described.
Journal ArticleDOI

A Porous Silicon-Based Optical Interferometric Biosensor

TL;DR: A biosensor has been developed based on induced wavelength shifts in the Fabry-Perot fringes in the visible-light reflection spectrum of appropriately derivatized thin films of porous silicon semiconductors based on Binding of molecules induced changes in the refractive index of the porous silicon.
Journal ArticleDOI

Linear waveguides in photonic-crystal slabs

TL;DR: In this article, a systematic analysis of waveguides in photonic-crystal slabs is presented, and the considerations that must be applied to achieve single-mode guided bands in these systems are discussed.
Journal ArticleDOI

Principles of biosensing with an extended coupling matrix and surface plasmon resonance

TL;DR: In this paper, the surface plasmon resonance angle shifts are calculated as a function of the amount of organic material in the interaction matrix and the influence of physical parameters, such as matrix thickness and wavelength of the light, on the expected performance is considered.
Related Papers (5)