scispace - formally typeset
Search or ask a question

Showing papers on "Ad hoc wireless distribution service published in 2001"


Journal Article
TL;DR: In this article, the authors proposed a geographical adaptive fidelity (GAF) algorithm that reduces energy consumption in ad hoc wireless networks by identifying nodes that are equivalent from a routing perspective and turning off unnecessary nodes, keeping a constant level of routing fidelity.
Abstract: We introduce a geographical adaptive fidelity (GAF) algorithm that reduces energy consumption in ad hoc wireless networks. GAF conserves energy by identifying nodes that are equivalent from a routing perspective and turning off unnecessary nodes, keeping a constant level of routing fidelity. GAF moderates this policy using application- and system-level information; nodes that source or sink data remain on and intermediate nodes monitor and balance energy use. GAF is independent of the underlying ad hoc routing protocol; we simulate GAF over unmodified AODV and DSR. Analysis and simulation studies of GAF show that it can consume 40% to 60% less energy than an unmodified ad hoc routing protocol. Moreover, simulations of GAF suggest that network lifetime increases proportionally to node density; in one example, a four-fold increase in node density leads to network lifetime increase for 3 to 6 times (depending on the mobility pattern). More generally, GAF is an example of adaptive fidelity, a technique proposed for extending the lifetime of self-configuring systems by exploiting redundancy to conserve energy while maintaining application fidelity.

2,829 citations


Proceedings ArticleDOI
16 Jul 2001
TL;DR: A geographical adaptive fidelity algorithm that reduces energy consumption in ad hoc wireless networks by identifying nodes that are equivalent from a routing perspective and then turning off unnecessary nodes, keeping a constant level of routing fidelity.
Abstract: We introduce a geographical adaptive fidelity (GAF) algorithm that reduces energy consumption in ad hoc wireless networks GAF conserves energy by identifying nodes that are equivalent from a routing perspective and then turning off unnecessary nodes, keeping a constant level of routing fidelity GAF moderates this policy using application- and system-level information; nodes that source or sink data remain on and intermediate nodes monitor and balance energy use GAF is independent of the underlying ad hoc routing protocol; we simulate GAF over unmodified AODV and DSR Analysis and simulation studies of GAF show that it can consume 40% to 60% less energy than an unmodified ad hoc routing protocol Moreover, simulations of GAP suggest that network lifetime increases proportionally to node density; in one example, a four-fold increase in node density leads to network lifetime increase for 3 to 6 times (depending on the mobility pattern) More generally, GAF is an example of adaptive fidelity, a technique proposed for extending the lifetime of self-configuring systems by exploiting redundancy to conserve energy while maintaining application fidelity

2,638 citations


Book
01 Mar 2001
TL;DR: The Dynamic Source Routing protocol (DSR) is a simple and efficient routing protocol designed specifically for use in multi-hop wireless ad hoc networks of mobile nodes, and a summary of some of the simulation and testbed implementation results for the protocol is provided.
Abstract: The Dynamic Source Routing protocol (DSR) is a simple and efficient routing protocol designed specifically for use in multi-hop wireless ad hoc networks of mobile nodes. DSR allows the network to be completely self-organizing and self-configuring, without the need for any existing network infrastructure or administration. The protocol is composed of the two mechanisms of Route Discovery and Route Maintenance, which work together to allow nodes to discover and maintain source routes to arbitrary destinations in the ad hoc network. The use of source routing allows packet routing to be trivially loop-free, avoids the need for up-to-date routing information in the intermediate nodes through which packets are forwarded, and allows nodes forwarding or overhearing packets to cache the routing information in them for their own future use. All aspects of the protocol operate entirely on-demand, allowing the routing packet overhead of DSR to scale automatically to only that needed to react to changes in the routes currently in use. We have evaluated the operation of DSR through detailed simulation on a variety of movement and communication patterns, and through implementation and significant experimentation in a physical outdoor ad hoc networking testbed we have constructed in Pittsburgh, and have demonstrated the excellent performance of the protocol. In this chapter, we describe the design of DSR and provide a summary of some of our simulation and testbed implementation results for the protocol.

2,579 citations


Proceedings ArticleDOI
01 Dec 2001
TL;DR: This work is proposing APS - a distributed, hop by hop positioning algorithm, that works as an extension of both distance vector routing and GPS positioning in order to provide approximate location for all nodes in a network where only a limited fraction of nodes have self location capability.
Abstract: Many ad hoc network protocols and applications assume the knowledge of geographic location of nodes. The absolute location of each networked node is an assumed fact by most sensor networks which can then present the sensed information on a geographical map. Finding location without the aid of GPS in each node of an ad hoc network is important in cases where GPS is either not accessible, or not practical to use due to power, form factor or line of sight conditions. Location would also enable routing in sufficiently isotropic large networks, without the use of large routing tables. We are proposing APS - a distributed, hop by hop positioning algorithm, that works as an extension of both distance vector routing and GPS positioning in order to provide approximate location for all nodes in a network where only a limited fraction of nodes have self location capability.

1,887 citations


Proceedings ArticleDOI
22 Apr 2001
TL;DR: A series of experiments are described which obtained detailed measurements of the energy consumption of an IEEE 802.11 wireless network interface operating in an ad hoc networking environment, and some implications for protocol design and evaluation in ad hoc networks are discussed.
Abstract: Energy-aware design and evaluation of network protocols requires knowledge of the energy consumption behavior of actual wireless interfaces. But little practical information is available about the energy consumption behavior of well-known wireless network interfaces and device specifications do not provide information in a form that is helpful to protocol developers. This paper describes a series of experiments which obtained detailed measurements of the energy consumption of an IEEE 802.11 wireless network interface operating in an ad hoc networking environment. The data is presented as a collection of linear equations for calculating the energy consumed in sending, receiving and discarding broadcast and point-to-point data packets of various sizes. Some implications for protocol design and evaluation in ad hoc networks are discussed.

1,810 citations


Proceedings ArticleDOI
16 Jul 2001
TL;DR: The question “Are large ad hoc networks feasible?” reduces to a question about the likely locality of communication in such networks, and it is shown that for total capacity to scale up with network size the average distance between source and destination nodes must remain small as the network grows.
Abstract: Early simulation experience with wireless ad hoc networks suggests that their capacity can be surprisingly low, due to the requirement that nodes forward each others' packets. The achievable capacity depends on network size, traffic patterns, and detailed local radio interactions. This paper examines these factors alone and in combination, using simulation and analysis from first principles. Our results include both specific constants and general scaling relationships helpful in understanding the limitations of wireless ad hoc networks.We examine interactions of the 802.11 MAC and ad hoc forwarding and the effect on capacity for several simple configurations and traffic patterns. While 802.11 discovers reasonably good schedules, we nonetheless observe capacities markedly less than optimal for very simple chain and lattice networks with very regular traffic patterns. We validate some simulation results with experiments.We also show that the traffic pattern determines whether an ad hoc network's per node capacity will scale to large networks. In particular, we show that for total capacity to scale up with network size the average distance between source and destination nodes must remain small as the network grows. Non-local traffic-patterns in which this average distance grows with the network size result in a rapid decrease of per node capacity. Thus the question “Are large ad hoc networks feasible?” reduces to a question about the likely locality of communication in such networks.

1,681 citations


Proceedings ArticleDOI
01 Nov 2001
TL;DR: Performance comparison of AOMDV with AODV is able to achieve a remarkable improvement in the end-to-end delay-often more than a factor of two, and is also able to reduce routing overheads by about 20%.
Abstract: We develop an on-demand multipath distance vector protocol for mobile ad hoc networks. Specifically, we propose multipath extensions to a well-studied single path routing protocol known as ad hoc on-demand distance vector (AODV). The resulting protocol is referred to as ad hoc on-demand multipath distance vector (AOMDV). The protocol computes multiple loop-free and link-disjoint paths. Loop-freedom is guaranteed by using a notion of "advertised hopcount". Link-disjointness of multiple paths is achieved by using a particular property of flooding. Performance comparison of AOMDV with AODV using ns-2 simulations shows that AOMDV is able to achieve a remarkable improvement in the end-to-end delay-often more than a factor of two, and is also able to reduce routing overheads by about 20%.

1,522 citations


Proceedings ArticleDOI
28 Dec 2001
TL;DR: OLSR is an optimization over a pure link state protocol as it compacts the size of information sent in the messages, and furthermore, reduces the number of retransmissions to flood these messages in an entire network.
Abstract: In this paper we propose and discuss an optimized link state routing protocol, named OLSR, for mobile wireless networks. The protocol is based on the link state algorithm and it is proactive (or table-driven) in nature. It employs periodic exchange of messages to maintain topology information of the network at each node. OLSR is an optimization over a pure link state protocol as it compacts the size of information sent in the messages, and furthermore, reduces the number of retransmissions to flood these messages in an entire network. For this purpose, the protocol uses the multipoint relaying technique to efficiently and economically flood its control messages. It provides optimal routes in terms of number of hops, which are immediately available when needed. The proposed protocol is best suitable for large and dense ad hoc networks.

1,476 citations


Journal ArticleDOI
TL;DR: It is demonstrated that even though DSR and AODV share similar on-demand behavior, the differences in the protocol mechanics can lead to significant performance differentials.
Abstract: Ad hoc networks are characterized by multihop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols. We compare the performance of two prominent on-demand routing protocols for mobile ad hoc networks: dynamic source routing (DSR) and ad hoc on-demand distance vector routing (AODV). A detailed simulation model with MAC and physical layer models is used to study interlayer interactions and their performance implications. We demonstrate that even though DSR and AODV share similar on-demand behavior, the differences in the protocol mechanics can lead to significant performance differentials. The performance differentials are analyzed using varying network load, mobility, and network size. Based on the observations, we make recommendations about how the performance of either protocol can be improved.

1,470 citations


Proceedings ArticleDOI
11 Jun 2001
TL;DR: This work proposes an on-demand routing scheme called split multipath routing (SMR) that establishes and utilizes multiple routes of maximally disjoint paths and uses a per-packet allocation scheme to distribute data packets into multiple paths of active sessions.
Abstract: In recent years, routing has been the most focused area in ad hoc networks research On-demand routing in particular, is widely developed in bandwidth constrained mobile wireless ad hoc networks because of its effectiveness and efficiency Most proposed on-demand routing protocols however, build and rely on a single route for each data session Whenever there is a link disconnection on the active route, the routing protocol must perform a route recovery process In QoS routing for wired networks, multiple path routing is popularly used Multiple routes are however, constructed using link-state or distance vector algorithms which are not well-suited for ad hoc networks We propose an on-demand routing scheme called split multipath routing (SMR) that establishes and utilizes multiple routes of maximally disjoint paths Providing multiple routes helps minimizing route recovery process and control message overhead Our protocol uses a per-packet allocation scheme to distribute data packets into multiple paths of active sessions This traffic distribution efficiently utilizes available network resources and prevents nodes of the route from being congested in heavily loaded traffic situations We evaluate the performance of our scheme using extensive simulation

1,325 citations


Journal ArticleDOI
TL;DR: The first distributed algorithms for routing that do not require duplication of packets or memory at the nodes and yet guarantee that a packet is delivered to its destination are described.
Abstract: We consider routing problems in ad hoc wireless networks modeled as unit graphs in which nodes are points in the plane and two nodes can communicate if the distance between them is less than some fixed unit. We describe the first distributed algorithms for routing that do not require duplication of packets or memory at the nodes and yet guarantee that a packet is delivered to its destination. These algorithms can be extended to yield algorithms for broadcasting and geocasting that do not require packet duplication. A by product of our results is a simple distributed protocol for extracting a planar subgraph of a unit graph. We also present simulation results on the performance of our algorithms.

Journal ArticleDOI
TL;DR: This work presents a new power-aware routing protocol to satisfy two constraints simultaneously of the power consumption rate of each node and the overall transmission power for each connection request, and compares the performance of different types of power-related routing algorithms via simulation.
Abstract: Most ad hoc mobile devices today operate on batteries. Hence, power consumption becomes an important issue. To maximize the lifetime of ad hoc mobile networks, the power consumption rate of each node must be evenly distributed, and the overall transmission power for each connection request must be minimized. These two objectives cannot be satisfied simultaneously by employing routing algorithms proposed in previous work. We present a new power-aware routing protocol to satisfy these two constraints simultaneously; we also compare the performance of different types of power-related routing algorithms via simulation. Simulation results confirm the need to strike a balance in attaining service availability performance of the whole network vs. the lifetime of ad hoc mobile devices.

Journal ArticleDOI
TL;DR: It is concluded that the current version of this wireless LAN protocol does not function well in multihop ad hoc networks, and it is doubt whether the WaveLAN-based system is workable as a mobile ad hoc testbed.
Abstract: The IEEE 802.11 MAC protocol is the standard for wireless LANs; it is widely used in testbeds and simulations for wireless multihop ad hoc networks. However, this protocol was not designed for multihop networks. Although it can support some ad hoc network architecture, it is not intended to support the wireless mobile ad hoc network, in which multihop connectivity is one of the most prominent features. In this article we focus on the following question: can the IEEE 802.11 MAC protocol function well in multihop networks? By presenting several serious problems encountered in an IEEE 802.11-based multihop network and revealing the in-depth cause of these problems, we conclude that the current version of this wireless LAN protocol does not function well in multihop ad hoc networks. We thus doubt whether the WaveLAN-based system is workable as a mobile ad hoc testbed.

Proceedings ArticleDOI
01 Oct 2001
TL;DR: An overview of security problems for mobile ad hoc networks is provided, distinguishing the threats on basic mechanisms and on security mechanisms and the solution to protect the security mechanisms is described.
Abstract: So far, research on mobile ad hoc networks has been forcused primarily on routing issues. Security, on the other hand, has been given a lower priority. This paper provides an overview of security problems for mobile ad hoc networks, distinguishing the threats on basic mechanisms and on security mechanisms. It then describes our solution to protect the security mechanisms. The original features of this solution include that (i) it is fully decentralized and (ii) all nodes are assigned equivalent roles.

Proceedings ArticleDOI
11 Jun 2001
TL;DR: It is shown that there does not exist a global optimum density, but rather that, to achieve this maximum, the node density should increase as the rate of node movement increases.
Abstract: An ad hoc mobile network is a collection of nodes, each of which communicates over wireless channels and is capable of movement. Wireless nodes have the unique capability of transmission at different power levels. As the transmission power is varied, a tradeoff exists between the number of hops from source to destination and the overall bandwidth available to individual nodes. Because both battery life and channel bandwidth are limited resources in mobile networks, it is important to ascertain the effects different transmission powers have on the overall performance of the network. This paper explores the nature of this transmission power tradeoff in mobile networks to determine the optimum node density for delivering the maximum number of data packets. It is shown that there does not exist a global optimum density, but rather that, to achieve this maximum, the node density should increase as the rate of node movement increases.

12 Nov 2001
TL;DR: In this article, a logging instrument contains a pulsed neutron source and a pair of radiation detectors spaced along the length of the instrument to provide an indication of formation porosity which is substantially independent of the formation salinity.
Abstract: A logging instrument contains a pulsed neutron source and a pair of radiation detectors spaced along the length of the instrument. The radiation detectors are gated differently from each other to provide an indication of formation porosity which is substantially independent of the formation salinity. In the preferred embodiment, the electrical signals indicative of radiation detected by the long-spaced detector are gated for almost the entire interval between neutron pulses and the short-spaced signals are gated for a significantly smaller time interval which commences soon after the termination of a given neutron burst. The signals from the two detectors are combined in a ratio circuit for determination of porosity.

Proceedings ArticleDOI
01 Oct 2001
TL;DR: A new routing technique called Security-Aware ad hoc Routing (SAR) is proposed that incorporates security attributes as parameters into ad hoc route discovery and develops a two-tier classification of routing protocol security metrics.
Abstract: We propose a new routing technique called Security-Aware ad hoc Routing (SAR) that incorporates security attributes as parameters into ad hoc route discovery. SAR enables the use of security as a negotiable metric to improve the relevance of the routes discovered by ad hoc routing protocols. We develop a two-tier classification of routing protocol security metrics, and propose a framework to measure and enforce security attributes on ad hoc routing paths. Our framework enables applications to adapt their behavior according to the level of protection available on communicating nodes in an ad hoc network.

Proceedings ArticleDOI
Kay Römer1
01 Oct 2001
TL;DR: This work presents a time synchronization scheme that is appropriate for sparse ad hoc networks and explains how the data sensed by various smart things can be combined to derive knowledge about the environment, which enables the smart things to "react" intelligently to their environment.
Abstract: Ubiquitous computing environments are typically based upon ad hoc networks of mobile computing devices. These devices may be equipped with sensor hardware to sense the physical environment and may be attached to real world artifacts to form so-called smart things. The data sensed by various smart things can then be combined to derive knowledge about the environment, which in turn enables the smart things to "react" intelligently to their environment. For this so-called sensor fusion, temporal relationships (X happened before Y) and real-time issues (X and Y happended within a certain time interval) play an important role. Thus physical time and clock synchronization are crucial in such environments. However, due to the characteristics of sparse ad hoc networks, classical clock synchronization algorithms are not applicable in this setting. We present a time synchronization scheme that is appropriate for sparse ad hoc networks

Journal ArticleDOI
TL;DR: This article addresses some of the quality of service issues for ad hoc networks which have started to receive increasing attention in the literature and focuses on QoS routing.
Abstract: Ad hoc wireless networks consist of mobile nodes interconnected by multihop communication paths. Unlike conventional wireless networks, ad hoc networks have no fixed network infrastructure or administrative support. The topology of the network changes dynamically as mobile nodes join or depart the network or radio links between nodes become unusable. This article addresses some of the quality of service issues for ad hoc networks which have started to receive increasing attention in the literature. The focus is on QoS routing. This is a complex and difficult issue because of the dynamic nature of the network topology and generally imprecise network state information. We present the basic concepts and discuss some of the results. The article concludes with some observations on the open areas for further investigation.

Journal ArticleDOI
TL;DR: A model for evaluating the energy consumption behavior of a mobile ad hoc network is presented and energy-aware performance analysis is shown to provide new insights into costly protocol behaviors and suggests opportunities for improvement at the protocol and link layers.
Abstract: A mobile ad hoc network (or manet) is a group of mobile, wireless nodes which cooperatively form a network independent of any fixed infrastructure or centralized administration. In particular, a manet has no base stations: a node communicates directly with nodes within wireless range and indirectly with all other nodes using a dynamically-computed, multi-hop route via the other nodes of the manet. Simulation and experimental results are combined to show that energy and bandwidth are substantively different metrics and that resource utilization in manet routing protocols is not fully addressed by bandwidth-centric analysis. This report presents a model for evaluating the energy consumption behavior of a mobile ad hoc network. The model was used to examine the energy consumption of two well-known manet routing protocols. Energy-aware performance analysis is shown to provide new insights into costly protocol behaviors and suggests opportunities for improvement at the protocol and link layers.

01 Jan 2001
TL;DR: In order to stimulate cooperation, a virtual currency is introduced and the way it can be protected against theft and forgery is detailed.
Abstract: In mobile ad hoc networks, it is usually assumed that all the nodes belong to the same authority; therefore, they are expected to cooperate in order to support the basic functions of the network such as routing. In this paper, we consider the case in which each node is its own authority and tries to maximize the benefits it gets from the network. In order to stimulate cooperation, we introduce a virtual currency and detail the way it can be protected against theft and forgery. We show that this mechanism fulfills our expectations without significantly decreasing the performance of the network.

Journal ArticleDOI
TL;DR: It is shown that the minimum cost flooding tree problem is similar to MCDS (Minimum Connected Dominating Set) problem and it is proved that the NP-completeness of the minimumCost Flooding tree problem can be proved.

Proceedings ArticleDOI
22 Apr 2001
TL;DR: By exploring geometric structures of Euclidean MSTs, it is proved that the approximation ratio of MST is between 6 and 12, and the approximation ratios of BIP is between /sup 13///sub 3/ and 12; these are the first analytical results for minimum-energy broadcasting.
Abstract: Energy conservation is a critical issue in ad hoc wireless networks for node and network life, as the nodes are powered by batteries only. One major approach for energy conservation is to route a communication session along the routes which requires the lowest total energy consumption. This optimization problem is referred to as minimum-energy routing. While minimum-energy unicast routing can be solved in polynomial time by shortest-path algorithms, it remains open whether minimum-energy broadcast routing can be solved in polynomial time, despite the NP-hardness of its general graph version. Previously three greedy heuristics were proposed in Wieselthier et al. (2000): MST (minimum spanning tree), SPT (shortest-path tree), and BIP (broadcasting incremental power). They have been evaluated through simulations in Wieselthier et al.], but little is known about their analytical performance. The main contribution of this paper is the quantitative characterization of their performances in terms of approximation ratios. By exploring geometric structures of Euclidean MSTs, we have been able to prove that the approximation ratio of MST is between 6 and 12, and the approximation ratio of BIP is between /sup 13///sub 3/ and 12. On the other hand, the approximation ratio of SPT is shown to be at least /sup n///sub 2/, where n is the number of receiving nodes. To our best knowledge, these are the first analytical results for minimum-energy broadcasting.

Proceedings ArticleDOI
01 Oct 2001
TL;DR: It is shown by analysis and simulation that the birthday protocols are a promising tool for saving energy during the deployment of an ad hoc network as well as an efficient and flexible means of having the nodes discover their neighbors.
Abstract: In this paper, we address two problems associated with static ad hoc wireless networks; methods of saving energy during a deployment of the nodes, and efficient methods of performing adjacent neighbor discovery. To meet these goals we introduce a family of "birthday protocols"which use random independent transmissions to discover adjacent nodes. Various modes of the birthday protocol are used to solve the two problems. We provide a mathematical model and analysis of two modes of the protocol and are led to a third mode which is the probabilistic analog of the deterministic round robin scheduling algorithm. We show by analysis and simulation that the birthday protocols are a promising tool for saving energy during the deployment of an ad hoc network as well as an efficient and flexible means of having the nodes discover their neighbors

Journal Article
TL;DR: An algorithm for routing in wireless and ad hoc networks using information regarding the geographic location of the nodes using a new type of distributed, adaptive and asynchronous algorithm, known as a geographical routing algorithm (GRA).
Abstract: This paper presents an algorithm for routing in wireless and ad hoc networks using information regarding the geographic location of the nodes. The algorithm, which is a new type of distributed, adaptive and asynchronous algorithm, is known as a geographical routing algorithm (GRA). The authors describe the GRA, and discuss it in relation to other routing algorithms in the literature. A system model and a problem statement are presented. Issues related to position information inaccuracy and inconsistency, and mobility are discussed, along with simulation results.

Proceedings ArticleDOI
01 Jan 2001
TL;DR: This work proposes several adaptive schemes, which can dynamically adjust thresholds based on local connectivity information and shows that these adaptive schemes can offer better reachability as well as efficiency as compared to the results in (Ni et al., 1999).
Abstract: In a multihop mobile ad hoc network, broadcasting is an elementary operation to support many applications. In (Ni et al., 1999), it is shown that naively broadcasting by flooding may cause serious redundancy, contention, and collision in the network, which we refer to as the broadcast storm problem. Several threshold-based schemes are shown to perform better than flooding in (Ni et al., 1999). However, how to choose thresholds also poses a dilemma between reachability and efficiency under different host densities. We propose several adaptive schemes, which can dynamically adjust thresholds based on local connectivity information. Simulation results show that these adaptive schemes can offer better reachability as well as efficiency as compared to the results in (Ni et al., 1999).

Proceedings ArticleDOI
Takahiro Hara1
22 Apr 2001
TL;DR: This work proposes three replica allocation methods to improve data accessibility by replicating data items on mobile hosts by taking into account the access frequency from mobile hosts to each data item and the status of the network connection.
Abstract: The advances in computer and wireless communication technologies have led to an increasing interest in ad hoc networks which are temporarily constructed by only mobile hosts. In ad hoc networks, since mobile hosts move freely, disconnections occur frequently, and this causes frequent network division. Consequently, data accessibility in ad hoc networks is lower than that in the conventional fixed networks. We propose three replica allocation methods to improve data accessibility by replicating data items on mobile hosts. In these three methods, we take into account the access frequency from mobile hosts to each data item and the status of the network connection. We also show the results of simulation experiments regarding the performance evaluation of our proposed methods.

Proceedings ArticleDOI
22 Apr 2001
TL;DR: This paper introduces the Bluetooth topology construction protocol (BTCP), an asynchronous distributed protocol for constructing scatternets which starts with nodes that have no knowledge of their surroundings and terminates with the formation of a connected network satisfying all connectivity constraints posed by the Bluetooth technology.
Abstract: Wireless ad hoc networks have been a growing area of research. While there has been considerable research on the topic of routing in such networks, the topic of topology creation has not received due attention. This is because almost all ad hoc networks to date have been built on top of a single channel, broadcast based wireless media, such as 802.11 or IR LANs. For such networks the distance relationship between the nodes implicitly (and uniquely) determines the topology of the ad hoc network. Bluetooth is a promising new wireless technology, which enables portable devices to form short-range wireless ad hoc networks and is based on a frequency hopping physical layer. This fact implies that hosts are not able to communicate unless they have previously discovered each other by synchronizing their frequency hopping patterns. Thus, even if all nodes are within direct communication range of each other, only those nodes which are synchronized with the transmitter can hear the transmission. To support any-to-any communication, nodes must be synchronized so that the pairs of nodes (which can communicate with each other) together form a connected graph. Using Bluetooth as an example, this paper first provides deeper insights into the issue to link establishment in frequency hopping wireless systems. It then introduces the Bluetooth topology construction protocol (BTCP), an asynchronous distributed protocol for constructing scatternets which starts with nodes that have no knowledge of their surroundings and terminates with the formation of a connected network satisfying all connectivity constraints posed by the Bluetooth technology. To the best of our knowledge, the work presented in this paper is the first attempt at building Bluetooth scatternets using distributed logic and is quite "practical" in the sense that it can be implemented using the communication primitives offered by the Bluetooth 1.0 specifications.

Proceedings ArticleDOI
01 Oct 2001
TL;DR: In this paper, the authors present the set of factors at the physical layer that are relevant to the performance evaluations of higher layer protocols, such as signal reception, path loss, fading, interference and noise computation, and preamble length.
Abstract: In most studies on mobile ad hoc networks (MANET), simulation models are used for the evaluation of devices and protocols. Typically, such simulations focus on the specific higher layer protocols that are being proposed, and tend to ignore details of models at other layers, particularly the interactions with physical layer models. In this paper, we present the set of factors at the physical layer that are relevant to the performance evaluations of higher layer protocols. Such factors include signal reception, path loss, fading, interference and noise computation, and preamble length. We start the discussion with the comparisions of physical layer models in ns-2 and GloMoSim, two commonly used simulators for MANET studies, and then quantify the impact of the preceding factors under typical scenarios used for the performance evaluation of wireless ad hoc routing protocols. Our experimental results show that the factors at the physical layer not only affect the absolute performance of a protocol, but because their impact on different protocols is non-uniform, it can even change the relative ranking among protocols for the same scenari

Proceedings ArticleDOI
11 Jun 2001
TL;DR: This work presents dynamic load-aware routing (DLAR) protocol that considers intermediate node routing loads as the primary route selection metric and describes three DLAR algorithms and shows their effectiveness by presenting and comparing simulation results with an ad hoc routing protocol that uses the shortest paths.
Abstract: Ad hoc networks are deployed in situations where no base station is available and a network has to be built impromptu. Since there is no wired backbone, each host is a router and a packet forwarder. Each node may be mobile, and topology changes frequently and unpredictably. Routing protocol development has received much attention because mobility management and efficient bandwidth and power usage are critical in ad hoc networks. No existing protocol however, considers the load as the main route selection criteria. This routing philosophy can lead to network congestion and create bottlenecks. We present dynamic load-aware routing (DLAR) protocol that considers intermediate node routing loads as the primary route selection metric. The protocol also monitors the congestion status of active routes and reconstructs the path when nodes of the route have their interface queue overloaded. We describe three DLAR algorithms and show their effectiveness by presenting and comparing simulation results with an ad hoc routing protocol that uses the shortest paths.