scispace - formally typeset
Search or ask a question

Showing papers on "Base pair published in 1991"


Journal ArticleDOI
31 Jan 1991-Nature
TL;DR: DCMP and dAMP are incorporated selectively opposite 8-oxodG with transient inhibition of chain extension occurring 3' to the modified base, and the potentially mutagenic insertion of dAMP is targeted exclusively to the site of the lesion.
Abstract: Oxidative damage to DNA, reflected in the formation of 8-oxo-7-hydrodeoxyguanosine (8-oxodG), may be important in mutagenesis, carcinogenesis and the ageing process. Kuchino et al. studied DNA synthesis on oligodeoxynucleotide templates containing 8-oxodG, concluding that the modified base lacked base pairing specificity and directed misreading of pyrimidine residues neighbouring the lesion. Here we report different results, using an approach in which the several products of a DNA polymerase reaction can be measured. In contrast to the earlier report, we find that dCMP and dAMP are incorporated selectively opposite 8-oxodG with transient inhibition of chain extension occurring 3' to the modified base. The potentially mutagenic insertion of dAMP is targeted exclusively to the site of the lesion. The ratio of dCMP to dAMP incorporated varies, depending on the DNA polymerase involved. Chain extension from the dA.8-oxodG pair was efficiently catalysed by all polymerases tested.

2,145 citations


Journal ArticleDOI
21 Jun 1991-Science
TL;DR: Data suggest that a function of p53 may be mediated by its ability to bind to specific DNA sequences in the human genome, and that this activity is altered by mutations that occur in human tumors.
Abstract: The tumor-suppressor gene p53 is altered by missense mutation in numerous human malignancies. However, the biochemical properties of p53 and the effect of mutation on these properties are unclear. A human DNA sequence was identified that binds specifically to wild-type human p53 protein in vitro. As few as 33 base pairs were sufficient to confer specific binding. Certain guanines within this 33-base pair region were critical, as methylation of these guanines or their substitution with thymine-abrogated binding. Human p53 proteins containing either of two missense mutations commonly found in human tumors were unable to bind significantly to this sequence. These data suggest that a function of p53 may be mediated by its ability to bind to specific DNA sequences in the human genome, and that this activity is altered by mutations that occur in human tumors.

1,079 citations


Journal ArticleDOI
30 Aug 1991-Science
TL;DR: The 3 angstrom resolution crystal structure of the Escherichia coli catabolite gene activator protein (CAP) complexed with a 30-base pair DNA sequence shows that the DNA is bent by 90 degrees.
Abstract: The 3 angstrom resolution crystal structure of the Escherichia coli catabolite gene activator protein (CAP) complexed with a 30-base pair DNA sequence shows that the DNA is bent by 90 degrees. This bend results almost entirely from two 40 degrees kinks that occur between TG/CA base pairs at positions 5 and 6 on each side of the dyad axis of the complex. DNA sequence discrimination by CAP derives both from sequence-dependent distortion of the DNA helix and from direct hydrogen-bonding interactions between three protein side chains and the exposed edges of three base pairs in the major groove of the DNA. The structure of this transcription factor--DNA complex provides insights into possible mechanisms of transcription activation.

1,046 citations


Journal ArticleDOI
TL;DR: Analysis of the deduced amino acid sequence suggests that CHIP28 protein contains six bilayer-spanning domains, two exofacial potential N-glycosylation sites, and intracellular N and C termini.
Abstract: CHIP28 is a 28-kDa integral membrane protein with similarities to membrane channels and is found in erythrocytes and renal tubules. A cDNA for CHIP28 was isolated from human fetal liver cDNA template by a three-step polymerase chain reaction (PCR) cloning strategy, starting with degenerate oligonucleotide primers corresponding to the N-terminal amino acid sequence determined from purified CHIP28 protein. Using the third-step PCR product as a probe, we isolated a recombinant from a human bone marrow cDNA library. The combined sequence of the PCR products and bone marrow cDNA contains 38 base pairs of 5' untranslated nucleotide sequence, an 807-bp open reading frame, and approximately 2 kilobases of 3' untranslated sequence containing a polyadenylation signal. This corresponds to the 3.1-kilobase transcript identified by RNA blot-hybridization analysis. Authenticity of the deduced amino acid sequence of the CHIP28 protein C terminus was confirmed by expression and immunoblotting. Analysis of the deduced amino acid sequence suggests that CHIP28 protein contains six bilayer-spanning domains, two exofacial potential N-glycosylation sites, and intracellular N and C termini. Search of the DNA sequence data base revealed a strong homology with the major intrinsic protein of bovine lens, which is the prototype of an ancient but recently recognized family of membrane channels. These proteins are believed to form channels permeable to water and possibly other small molecules. CHIP28 shares homology with all known members of this channel family, and it is speculated that CHIP28 has a similar function.

759 citations


Journal ArticleDOI
20 Dec 1991-Cell
TL;DR: Results suggest that both reactions occur by a one-step mechanism without involvement of a covalent protein-DNA intermediate in HIV-1 integration.

637 citations


Journal ArticleDOI
TL;DR: It appears that the size distribution of condensed particles is determined kinetically rather than thermodynamically, and that slow condensation kinetics may be required to overcome the high activation energy of highly distorted DNA bends or kinks at the turning points of rods.
Abstract: DNA is generally found within viruses and cells in a tightly packaged state, typically occupying only 10(-4)-10(-6) of the volume of the uncondensed DNA wormlike coil. Condensation can be induced in vitro at low salt by the naturally occurring polyamines spermidine3+ and spermine4+, by hexammine cobalt(III), and even by Mg2+ in methanol-water mixtures. These condensates generally have an orderly, toroidal, or rodlike shape and size similar to that of DNA gently lysed from phage heads. It is also striking that the condensate size distribution is independent of DNA molecular length from 400 to 40,000 base pairs (bp), but that shorter DNA molecules (e.g., 150-bp mononucleosomal DNA) cannot condense in this fashion. We have constructed a successive association equilibrium theory to attempt to explain these results, using an equation devised by Tanford for micelle formation. Most of the obvious attractive and repulsive free energy contributions (mixing, bending, hydration, and other nearest-neighbor interactions) are linear in the amount of DNA incorporated, but the net attractive delta G0 grows nonlinearly because of the increasing average number of nearest neighbors of each duplex as the particle grows. In order that the size distribution have a maximum, a quadratic repulsive free energy is also required, arising from the electrostatic self-energy of the incompletely neutralized particles. The net attractive free energy per base pair interaction is tiny, on the order of 10(-3) kT. Despite the apparent generally correct order of magnitude of the various free energy terms, the calculated size distribution is smaller and narrower than observed experimentally. It appears that the size distribution of condensed particles is determined kinetically rather than thermodynamically. Very short DNA molecules cannot nucleate stable aggregates because they cannot develop adequate overlap, either internally or intermolecularly. A substantial fraction of rodlike condensates is observed in aqueous solutions only with a rather inefficient condensing agent, permethylated spermidine. This suggests that slow condensation kinetics may be required to overcome the high activation energy of highly distorted DNA bends or kinks at the turning points of rods. Evidence is reviewed that condensation may be associated with localized helix structure distortion provoked by condensing agents.

629 citations


Journal ArticleDOI
12 Jul 1991-Science
TL;DR: The solution structures of the GCAA and GAAA hairpins have been determined by nuclear magnetic resonance spectroscopy and these interactions explain the high stability of these hairpins and the sequence requirements for the variant and invariant nucleotides in the GNRA tetranucleotide loop family.
Abstract: The most frequently occurring RNA hairpins in 16S and 23S ribosomal RNA contain a tetranucleotide loop that has a GNRA consensus sequence. The solution structures of the GCAA and GAAA hairpins have been determined by nuclear magnetic resonance spectroscopy. Both loops contain an unusual G-A base pair between the first and last residue in the loop, a hydrogen bond between a G base and a phosphate, extensive base stacking, and a hydrogen bond between a sugar 2'-end OH and a base. These interactions explain the high stability of these hairpins and the sequence requirements for the variant and invariant nucleotides in the GNRA tetranucleotide loop family.

576 citations


Journal ArticleDOI
TL;DR: A new model to explain the involvement of symmetric elements in frameshift mutagenesis was devised, which successfully accounted for a majority of the single base deletions examined, and it is proposed that dissociation of polymerase a at arrest sites may lead to deletion of a DNA sequence either by slipped mispairing via a number of different secondary structure intermediates, or by strand-switching or base misincorporation.
Abstract: Reports describing short (< 20 bp) gene deletions causing human genetic disease were collated in order to study underlying causative mechanisms. Deletion break-point junction regions were found to be non-random both at the nucleotide and dinucleotide sequence levels, an observation consistent with an endogenous sequencedirected mechanism of mutagenesis. Direct repeats of between 2 bp and 8 bp were found in the immediate vicinity of all but one of the 60 deletions analysed. Direct repeats are a feature of a number of recombination, replication or repair-based models of deletion mutagenesis and the possible contribution of each to the spectrum of mutations examined was assessed. The influence of parameters such as repeat length and lenght of DNA between repeats was studied in relation to the frequency, location and extent of these deletions. Findings were broadly consistent with a slipped mispairing model but the predicted deletion of one whole repeat copy was found only rarely. A modified version of the slipped mispairing hypothesis was therefore proposed and was shown to possess considerable explanatory value for ∼ 25% of deletions examined. Whereas the frequency of inverted repeats in the vicinity of gene deletions was not significantly elevated, these elements may nevertheless promote instability by facilitating the formation of secondary structure intermediates. A significant excess of symmetrical sequence elements was however found at sites of single base deletions. A new model to explain the involvement of symmetric elements in frameshift mutagenesis was devised, which successfully accounted for a majority of the single base deletions examined. In general, the loss of one or a few base pairs of DNA was found to be more compatible with a replication-based model of mutagenesis than with a recombination or repair hypothesis. Seven hitherto unrecognized hotspots for deletion were noted in five genes (AT3, F8, HBA, HBB and HPRT). Considerable sequence homology was found between these different sites, and a consensus sequence (TGA/GA/GG/ TA/C) was drawn up. Sequences fitting this consensus (i) were noted in the immediate vicinity of 41% of the other (sporadic) gene deletions, (ii) were found frequently at sites of spontaneous deletion in the hamster APRT gene, (iii) were found to be associated with many larger human gene deletions/translocations, (iv) act as arrest sites for human polymerase a during DNA replication and (v) have been shown by in vitro studies of human polymerase a to be especially prone to frameshift mutation. It is proposed that dissociation of polymerase a at arrest sites may, by providing a stable single stranded substrate, lead to deletion of a DNA sequence either by slipped mispairing via a number of different secondary structure intermediates, or by strand-switching or base misincorporation. Human gene deletions thus appear to be caused by multiple mechanisms whose relative importance is probably governed by local primary and secondary DNA structure. Our ability to predict precisely the location and extent of a gene deletion is however hampered both by this complexity and by the possibility that these mechanisms may often act in combination.

447 citations


Patent
27 Feb 1991
TL;DR: In this article, a method for determining the sequence of nucleotides on a single strand DNA molecule is provided for finding the next unpaired base in the unknown DNA strand, where a leader oligonucleotide and its complementary strand are attached to a solid state support, with each of the bases A, G, C, T having a different fluorescent label, in the presence of DNA polymerase.
Abstract: A method is provided for determining the sequence of nucleotides on a single strand DNA molecule. The single strand DNA molecule is attached to a leader oligonucleotide and its complementary strand to a solid state support. Fluorescently-labeled 3'-blocked nucleotide triphosphates, with each of the bases A, G, C, T having a different fluorescent label, are mixed with the bound DNA molecule in the presence of DNA polymerase. The DNA polymerase causes selective addition of only the complementary labeled NTP, thus identifying the next unpaired base in the unknown DNA strand. The 3'-blocking group is then removed, setting the system up for the next NTP addition and so on. The sequence is repeated until no more fluorescently-labeled NTPs can be detected as being added by the polymerase.

419 citations


Journal ArticleDOI
01 Nov 1991-Cell
TL;DR: It is proposed that the G:G base pair distorts the sugar-phosphate backbone of viral RNA and that this distortion is a critical determinant of recognition by Rev.

396 citations


Journal ArticleDOI
TL;DR: The structural features of the loop can explain the unusual thermodynamic stability of this hairpin and its sensitivity to mutations of loop nucleotides.
Abstract: The structure of a very common RNA hairpin, 5'GGAC(UUCG)GUCC, has been determined in solution by NMR spectroscopy. The loop sequence, UUCG, occurs exceptionally often in ribosomal and other RNAs, and may serve as a nucleation site for RNA folding and as a protein recognition site. Reverse transcriptase cannot read through this loop, although it normally transcribes RNA secondary structure motifs. A hairpin with that loop displays unusually high thermodynamic stability; its stability decreases when conserved nucleotides are mutated. The three-dimensional structure for the hairpin was derived from interproton distances and scalar coupling constants determined by NMR using distance geometry, followed by restrained energy minimization. The structure was well-defined despite the conservative use of interproton distances, by constraining the backbone conformation by means of scalar coupling measurements. A mismatch G.U base pair, with syn-guanosine, closes the stem. This hairpin has a loop of only two nucleotides; both adopt C2'-endo sugar pucker. A sharp turn in the phosphodiester backbone is stabilized by a specific cytosine-phosphate contact, probably a hydrogen bond, and by stacking of the cytosine nucleotide on the G.U base pair. The structural features of the loop can explain the unusual thermodynamic stability of this hairpin and its sensitivity to mutations of loop nucleotides.

Journal ArticleDOI
TL;DR: Results indicates that four base pairs of homology are sufficient for some types of mitotic recombination.
Abstract: DNA fragments (generated by BamHI treatment) with no homology to the yeast genome were transformed into Saccharomyces cerevisiae. When the fragments were transformed in the presence of the BamHI enzyme, they integrated into genomic BamHI sites. When the fragments were transformed in the absence of the enzyme, they integrated into genomic G-A-T-C sites. Since the G-A-T-C sequence is present at the ends of BamHI fragments, this results indicates that four base pairs of homology are sufficient for some types of mitotic recombination.

Journal ArticleDOI
TL;DR: This work has studied the RNA hairpin GGAC(UUCG)GUCC and several sequence variants to determine the effect of changing the loop sequence and the loop-closing base pair on the thermodynamic stability of (UNCG) tetra-loops, and obtained thermodynamic parameters for DNA hairpin with sequences analogous to stable RNA hairpins with (UN CG), C(GNRA)G, C(GAUA) G, and G(CUUG)C loops.
Abstract: About 70% of the RNA tetra-loop sequences identified in ribosomal RNAs from different organisms fall into either (UNCG) or (GNRA) families (where N = A, C, G, or U; and R = A or G). RNA hairpins with these loop sequences form unusually stable tetra-loop structures. We have studied the RNA hairpin GGAC(UUCG)GUCC and several sequence variants to determine the effect of changing the loop sequence and the loop-closing base pair on the thermodynamic stability of (UNCG) tetra-loops. The hairpin GGAG(CUUG)CUCC with the conserved loop G(CUUG)C was also unusually stable. We have determined melting temperatures (Tm), and obtained thermodynamic parameters for DNA hairpins with sequences analogous to stable RNA hairpins with (UNCG), C(GNRA)G, C(GAUA)G, and G(CUUG)C loops. DNA hairpins with (TTCG), (dUdUCG), and related sequences in the loop, unlike their RNA counterparts, did not form unusually stable hairpins. However, DNA hairpins with the consensus loop sequence C(GNRA)G were very stable compared to hairpins with C(TTTT)G or C(AAAA)G loops. The C(GATA)G and G(CTTG)C loops were also extra stable. The relative stabilities of the unusually stable DNA hairpins are similar to those observed for their RNA analogs.

Journal ArticleDOI
09 Aug 1991-Cell
TL;DR: Replication of human immunodeficiency virus requires binding of the viral Tat protein to its RNA target sequence TAR; peptides derived from Tat bind to a TAR "contact site" spanning 5 bp and a trinucleotide pyrimidine bulge.

Journal ArticleDOI
TL;DR: It is proposed that local duplex unwinding is a major determinant in the recognition of DNA damage by the Escherichia coli (A)BC excinuclease.
Abstract: The DNA unwinding produced by specific adducts of the antitumor drug cis-diamminedi-chloroplatinum(II) has been quantitatively determined. Synthetic DNA duplex oligonucleotides of varying lengths with two base pair cohesive ends were synthesized and characterized that contained site-specific intrastrand N7-purine/N7-purine cross-links. Included are cis-(Pt(NH{sub 3}){sub 2}(d(GpG))), cis-(Pt(NH){sub 3}{sub 2}(d(ApG))), and cis-(Pt(NH{sub 3}){sub 2}(d(GpTpG))) adducts, respectively referred to as cis-GG, cis-AG, and cis-GTG. Local DNA distortions at the site of platination were amplified by polymerization of these monomers and quantitatively evaluated by using polyacrylamide gel electrophoresis. The extent of DNA unwinding was determined by systematically varying the interplatinum distance, or phasing, in polymers containing the adducts. The multimer that migrates most slowly gives the optimal phasing for cooperative bending, from which the degree of unwinding can be obtained. The authors find that the cis-GG and cis-AG adducts both unwind DNA by 13{degrees}, while the cis-GTG adduct unwinds DNA by 23{degrees}. In addition, experiments are presented that support previous studies revealing that a hinge joint forms at the sites of platination in DNA molecules containing trans-GTG adducts. On the basis of an analysis of the present and other published studies of site-specifically modified DNA. The authors propose that local duplex unwinding is a majormore » determinant in the recognition of DNA damage by the Escherichia coli (A)BC excinuclease. In addition, local duplex unwinding of 13{degrees} and bending by 35{degrees} are shown to correlate well with the recognition of platinated DNA by a previously identified damage recognition protein (DRP) in human cells.« less

Journal ArticleDOI
10 Oct 1991-Nature
TL;DR: This structure emphasizes the importance of specific hydrogen bonding between not only the nucleotide bases, but also the ribose hydroxyls, phosphate oxygens and tightly bound waters in stabilization of the intramolecular and intermolecular structures of double helical RNA.
Abstract: The crystal structure of the RNA dodecamer duplex (r-GGACUUCGGUCC)2 has been determined. The dodecamers stack end-to-end in the crystal, simulating infinite A-form helices with only a break in the phosphodiester chain. These infinite helices are held together in the crystal by hydrogen bonding between ribose hydroxyl groups and a variety of donors and acceptors. The four noncomplementary nucleotides in the middle of the sequence did not form an internal loop, but rather a highly regular double-helix incorporating the non-Watson-Crick base pairs, G.U and U.C. This is the first direct observation of a U.C (or T.C) base pair in a crystal structure. The U.C pairs each form only a single base-base hydrogen bond, but are stabilized by a water molecule which bridges between the ring nitrogens and by four waters in the major groove which link the bases and phosphates. The lack of distortion introduced in the double helix by the U.C mismatch may explain its low efficiency of repair in DNA. The G.U wobble pair is also stabilized by a minor-groove water which bridges between the unpaired guanine amino and the ribose hydroxyl of the uracil. This structure emphasizes the importance of specific hydrogen bonding between not only the nucleotide bases, but also the ribose hydroxyls, phosphate oxygens and tightly bound waters in stabilization of the intramolecular and intermolecular structures of double helical RNA.

Journal ArticleDOI
TL;DR: The experiments and computer simulations suggest that continuous stacking hybridization may increase the efficiency of sequencing so that random or natural coding DNA fragments about 1000 bases long could be sequenced in more than 97% of cases.
Abstract: A new technique of DNA sequencing by hybridization with oligonucleotide matrix (SHOM) which could also be applied for DNA mapping and fingerprinting, mutant diagnostics, etc., has been tested in model experiments. A dot matrix was prepared which contained 9 overlapping octanucleotides (8-mers) complementary to a common 17-mer. Each of the 8-mers was immobilized as individual dot in thin layer of polyacrylamide gel fixed on a glass plate. The matrix was hybridized with the 32P-labeled 17-mer and three other 17-mers differing from the first one by a single base change. The hybridization enabled us to distinguish perfect duplexes from those containing mismatches in 32 out of 35 cases. These results are discussed with respect to the applicability of the approach for sequencing. It was shown that hybridization of DNA with an immobilized 8-mer in the presence of a labeled 5-mer led to the formation of a stable duplex with the 5-mer only if the 5- and the 8-mers were in continuous stacking making a perfect nicked duplex 13 (5+8) base pairs long. These experiments and computer simulations suggest that continuous stacking hybridization may increase the efficiency of sequencing so that random or natural coding DNA fragments about 1000 bases long could be sequenced in more than 97% of cases. Miniaturized matrices or sequencing chips were designed, where oligonucleotides were immobilized within 100 x 100 micron dots disposed at 100 micron intervals. Hybridization of fluorescently labeled DNA fragments with microchips may simplify sequencing and ensure sensitivity of at least 10 attomoles per dot. The perspectives and limitations of SHOM are discussed.

Journal ArticleDOI
18 Oct 1991-Cell
TL;DR: A phylogenetic comparative analysis of telomerase RNAs from seven tetrahymenine ciliates revealed a strikingly conserved secondary structure that contains the telomeric templating region.

Journal ArticleDOI
TL;DR: This work proposes a model in which duplex or hairpin forms of G-DNA are folding intermediates in the formation of either 1-, 2-, or 4-stranded quadruplex structures, and monovalent cations stabilize the duplex and quadruplex forms via two distinct mechanisms, counterion condensation and octahedral coordination to the carbonyl groups in stacked planar guanine "quartet" base assemblies.
Abstract: Telomeric DNA consists of G- and C-rich strands that are always polarized such that the G-rich strand extends past the 3' end of the duplex to form a 12-16-base overhang. These overhanging strands can self-associate in vitro to form intramolecular structures that have several unusual physical properties and at least one common feature, the presence of non-Watson-Crick G.G base pairs. The term "G-DNA" was coined for this class of structures (Cech, 1988). On the basis of gel electrophoresis, imino proton NMR, and circular dichroism (CD) results, we find that changing the counterions from sodium to potassium (in 20 mM phosphate buffers) specifically induces conformational transitions in the G-rich telomeric DNA from Tetrahymena, d(T2G4)4 (TET4), which results in a change from the intramolecular species to an apparent multistranded structure, accompanied by an increase in the melting temperature of the base pairs of greater than 25 degrees, as monitored by loss of the imino proton NMR signals. NMR semiselective spin-lattice relaxation rate measurements and HPLC size-exclusion chromatography studies show that in 20 mM potassium phosphate (pH 7) buffer (KP) TET4 is approximately twice the length of the form obtained in 20 mM sodium phosphate (pH 7) buffer (NaP) and that mixtures of Na+ and K+ produce mixtures of the two forms whose populations depend on the ratio of the cations. Since K+ and NH4+ are known to stabilize a parallel-stranded quadruplex structure of poly[r(I)4], we infer that the multistranded structure is a quadruplex. Our results indicate that specific differences in ionic interactions can result in a switch in telomeric DNAs between intramolecular hairpin-like or quadruplex-containing species and intermolecular quadruplex structures, all of which involve G.G base pairing interactions. We propose a model in which duplex or hairpin forms of G-DNA are folding intermediates in the formation of either 1-, 2-, or 4-stranded quadruplex structures. In this model monovalent cations stabilize the duplex and quadruplex forms via two distinct mechanisms, counterion condensation and octahedral coordination to the carbonyl groups in stacked planar guanine "quartet" base assemblies. Substituting one of the guanosine residues in each of the repeats of the Tetrahymena sequence to give the human telomeric DNA, d(T2AG3)4, results in less effective K(+)-dependent stabilization. Thus, the ion-dependent stabilization is attenuated by altering the sequence. Upon addition of the Watson-Crick (WC) complementary strand, only the Na(+)-stabilized structure dissociates quickly to form a WC double helix.(ABSTRACT TRUNCATED AT 400 WORDS)

Journal ArticleDOI
TL;DR: The DNA double helix exhibits local sequence-dependent polymorphism at the level of the single base pair and dinucleotide step, but their occurrence and structural details are dependent on the DNA superhelical density in the cell and can be related to some cellular processes.
Abstract: The DNA double helix exhibits local sequence-dependent polymorphism at the level of the single base pair and dinucleotide step. Curvature of the DNA molecule occurs in DNA regions with a specific type of nucleotide sequence periodicities. Negative supercoiling induces in vitro local nucleotide sequence-dependent DNA structures such as cruciforms, left-handed DNA, multistranded structures, etc. Techniques based on chemical probes have been proposed that make it possible to study DNA local structures in cells. Recent results suggest that the local DNA structures observed in vitro exist in the cell, but their occurrence and structural details are dependent on the DNA superhelical density in the cell and can be related to some cellular processes.

Journal ArticleDOI
TL;DR: The ability to discern differences in the strength of base-pairing interactions at a specific site in DNA by observing their effect on the dynamics of base motion is a novel aspect of the present study.
Abstract: The structural dynamics of mismatched base pairs in duplex DNA have been studied by time-resolved fluorescence anisotropy decay measurements on a series of duplex oligodeoxynucleotides of the general type d[CGG(AP)GGC].d[GCCXCCG], where AP is the fluorescent adenine analogue 2-aminopurine and X = T, A, G, or C. The anisotropy decay is caused by internal rotations of AP within the duplex, which occur on the picosecond time scale, and by overall rotational diffusion of the duplex. The correlation time and angular range of internal rotation of AP vary among the series of AP.X mismatches, showing that the native DNA bases differ in their ability to influence the motion of AP. These differences are correlated with the strength of base-pairing interactions in the various AP.X mismatches. The interactions are strongest with X = T or C. The ability to discern differences in the strength of base-pairing interactions at a specific site in DNA by observing their effect on the dynamics of base motion is a novel aspect of the present study. The extent of AP stacking within the duplex is also determined in this study since it influences the excited-state quenching of AP. AP is thus shown to be extrahelical in the AP.G mismatch. The association state of the AP-containing oligodeoxynucleotide strand is determined from the temperature-dependent tumbling correlation time. An oligodeoxynucleotide triplex is formed with a particular base sequence in a pH-dependent manner.

Journal ArticleDOI
TL;DR: It is shown that the presence of various forms of this 10-bp sequence results in increased uptake of double-stranded DNA into a DNase-resistant state and allows genetic transformation by an otherwise nontransformable plasmid.
Abstract: Piliated Neisseria gonorrhoeae are known to be transformed less readily if transforming DNA competes with DNA containing the 10-bp sequence GCCGTCTGAA. It has been postulated that the 10-bp sequence is a recognition sequence which is required for efficient DNA uptake. We show that the presence of various forms of this 10-bp sequence results in increased uptake of double-stranded DNA into a DNase-resistant state and allows genetic transformation by an otherwise nontransformable plasmid. Images

Journal Article
TL;DR: The findings suggest that ara-C activates a program involving both oligonucleosomal DNA fragmentation and changes in early response gene expression, which is associated with loss of clonogenic survival in U-937 myeloid leukemia cells.
Abstract: The present results demonstrate that treatment of human U-937 myeloid leukemia cells with 1-β-d-arabinofuranosylcytosine (ara-C) is associated with DNA fragmentation at multiples of approximately 200 base pairs. The extent of ara-C-induced DNA fragmentation was dependent on drug concentration and time of exposure. This pattern of internucleosomal DNA cleavage has been observed during programmed cell death and was associated in the present studies with loss of clonogenic survival. The results also demonstrate that the c-jun protooncogene is induced by ara-C during periods of DNA cleavage. These findings suggest that ara-C activates a program involving both oligonucleosomal DNA fragmentation and changes in early response gene expression.

Journal ArticleDOI
TL;DR: NMR data indicate that the 8-hydroxyguanine (oh8G) base takes a 6,8-diketo tautomeric form and is base-paired to C with Watson-Crick type hydrogen bonds in a B-form structure.
Abstract: The effects of hydroxylation at the C8 of a deoxyguanosine residue in DNA were studied by NMR analysis of a self-complementary dodecanucleotide, d(C1-G2-C3-oh8G4-A5-A6-T7-T8-C9-G10-C11-G12), which has an 8-hydroxy-2'-deoxyguanosine (oh8dG) residue at the 4th position. NMR data indicate that the 8-hydroxyguanine (oh8G) base takes a 6,8-diketo tautomeric form and is base-paired to C with Watson-Crick type hydrogen bonds in a B-form structure. The thermal stability of the duplex is reduced, but the overall structure is much the same as that of the unmodified d(CGCGAATTCGCG) duplex. The structural changes caused by 8-hydroxylation of the deoxyguanosine, if any, are localized near the modification site.

Patent
29 Apr 1991
TL;DR: In this article, the cloning of the gene of a thermophilic DNA ligase, from Thermus aquaticus strain HB8, was described, and the use of this ligase for the detection of specific sequences of nucleotides in a variety of nucleic acid samples.
Abstract: The present invention relates to the cloning of the gene of a thermophilic DNA ligase, from Thermus aquaticus strain HB8, and the use of this ligase for the detection of specific sequences of nucleotides in a variety of nucleic acid samples, and more particularly in those samples containing a DNA sequence characterized by a difference in the nucleic acid sequence from a standard sequence including single nucleic acid base pair changes, deletions, insertions or translocations.

Journal ArticleDOI
15 Aug 1991
TL;DR: It is proposed that rev regulates human immunodeficiency virus RNA expression by selectively packaging viral transcripts carrying the rev-response element sequence into rod-like nucleoprotein complexes that block splicing of the packaged mRNAs.
Abstract: The human immunodeficiency virus type 1 rev protein binds with high affinity (Kd less than 1-3 nM) to a purine-rich "bubble" containing bulged GG and GUA residues on either side of a double-helical RNA stem-loop located toward the 5' end of rev-response element RNA. High-affinity rev binding is maintained when the bubble is placed in heterologous stem-loop structures, but rev binding is reduced when either the bulged residues or flanking base pairs in the stem are altered. Rev binding to the purine-rich bubble nucleates assembly of long filamentous ribonucleoprotein structures containing polymers of rev bound to flanking RNA sequences. It is proposed that rev regulates human immunodeficiency virus RNA expression by selectively packaging viral transcripts carrying the rev-response element sequence into rod-like nucleoprotein complexes that block splicing of the packaged mRNAs.

Journal ArticleDOI
TL;DR: The identification of a modified long form of PRL-R in the Nb2 cell line should help localize domains of the PRL -R involved in signal transduction and further the investigation of prolactin's role in immune cell proliferation.

Journal ArticleDOI
TL;DR: The technological components of large-scale DNA sequencing using the sequencing by hybridization method are in place and the hybridization pattern obtained enabled us to resequence the 100 base pairs by applying an algorithm that tolerates an error rate much higher than was observed in the experiment.
Abstract: Determination of the sequences of human and other complex genomes requires much faster and less expensive sequencing processes than the methods in use today. Sequencing by hybridization is potentially such a process. In this paper we present hybridization data sufficient to accurately read a known sequence of 100 base pairs. In independent reactions, octamer and nonamer oligonucleotides derived from the sequence hybridized more strongly to this DNA than to controls. The 93 consecutive overlapping probes were derived from a 100-base-pair segment of test DNA and additional probes were generated by incorporation of a noncomplementary base at one of the ends of 12 of the basic probes. These 12 additional probes also had a full-match target in one of the control DNAs. The test and one of five control DNAs spotted on nylon filters were hybridized with 83 octamers and 22 nonamers under low-temperature conditions. A stronger signal in DNA containing a full-match target compared to DNA with only mismatched targets was obtained with all 105 probes. In 3 cases (2.9%), the difference of signals was not significant (less than 2-fold) due to inefficient hybridization and the consequently higher influence of background. The hybridization pattern obtained enabled us to resequence the 100 base pairs by applying an algorithm that tolerates an error rate much higher than was observed in the experiment. With this result, the technological components of large-scale DNA sequencing using the sequencing by hybridization method are in place.

Journal ArticleDOI
TL;DR: A model in which base pairing with a complementary RNA regulates alternative processing of alpha 1 and alpha 2 mRNAs is consistent with a mechanism in which bases are paired with an altered ligand binding domain of unknown function.

Patent
TL;DR: An improved method for determining the nucleotide base sequence of a DNA molecule was proposed in this paper, which includes annealing the DNA molecule with a primer molecule able to hybridize to the DNA molecules, incubating the annealed mixture in a vessel containing four different deoxynucleoside triphosphates, a DNA polymerase, and one or more DNA synthesis terminating agents which terminate DNA synthesis at a specific base.
Abstract: An improved method for determining the nucleotide base sequence of a DNA molecule. The method includes annealing the DNA molecule with a primer molecule able to hybridize to the DNA molecule; incubating the annealed mixture in a vessel containing four different deoxynucleoside triphosphates, a DNA polymerase, and one or more DNA synthesis terminating agents which terminate DNA synthesis at a specific nucleotide base, wherein each the agent terminates DNA synthesis at a different nucleotide base; and separating the DNA products of the incubating reaction according to size, whereby at least a part of the nucleotide base sequence of the DNA can be determined. The improvement is provision of a DNA polymerase which is a φ29-type DNA polymerase.