scispace - formally typeset
D

David Neil Cooper

Researcher at Cardiff University

Publications -  678
Citations -  82274

David Neil Cooper is an academic researcher from Cardiff University. The author has contributed to research in topics: Gene & Gene mutation. The author has an hindex of 108, co-authored 651 publications receiving 70286 citations. Previous affiliations of David Neil Cooper include University of Western Brittany & Stanford University.

Papers
More filters
Journal ArticleDOI

A global reference for human genetic variation.

Adam Auton, +517 more
- 01 Oct 2015 - 
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Journal ArticleDOI

Analysis of protein-coding genetic variation in 60,706 humans

Monkol Lek, +106 more
- 18 Aug 2016 - 
TL;DR: The aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC) provides direct evidence for the presence of widespread mutational recurrence.

A global reference for human genetic variation

Adam Auton, +479 more
TL;DR: The 1000 Genomes Project as mentioned in this paper provided a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and reported the completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole genome sequencing, deep exome sequencing and dense microarray genotyping.
Journal ArticleDOI

MutationTaster2: mutation prediction for the deep-sequencing age

TL;DR: This method takes advantage of the high hybridization efficiency of FISH and the fact that base-pair resolution is usually not needed to uniquely identify a transcript, and will enable the transcriptome to be directly imaged at single-cell resolution in complex samples such as brain tissue.
Journal ArticleDOI

Genome sequence of the Brown Norway rat yields insights into mammalian evolution

Richard A. Gibbs, +242 more
- 01 Apr 2004 - 
TL;DR: This first comprehensive analysis of the genome sequence of the Brown Norway (BN) rat strain is reported, which is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution.