scispace - formally typeset
Search or ask a question

Showing papers on "Catalase published in 2022"


Journal ArticleDOI
TL;DR: The role of the essential trace element, selenium, in type-2 diabetes mellitus and its metabolic co-morbidities, including metabolic syndrome, obesity and non-alcoholic fatty liver disease, was discussed in this paper .
Abstract: This review addresses the role of the essential trace element, selenium, in type-2 diabetes mellitus (T2DM) and its metabolic co-morbidities, i.e., metabolic syndrome, obesity and non-alcoholic fatty liver disease. We refer to the dietary requirements of selenium and the key physiological roles of selenoproteins. We explore the dysregulated fuel metabolism in T2DM and its co-morbidities, emphasizing the relevance of inflammation and oxidative stress. We describe the epidemiology of observational and experimental studies of selenium in diabetes and related conditions, explaining that the interaction between selenium status and glucose control is not limited to hyperglycemia but extends to hypoglycemia. We propose that the association between high plasma/serum selenium and T2DM/fasting plasma glucose observed in many cross-sectional studies may rely on the upregulation of hepatic selenoprotein-P biosynthesis in conditions of hyperglycemia and insulin resistance. While animal studies have revealed potential molecular mechanisms underlying adverse effects of severe selenium/selenoprotein excess and deficiency in the pathogenesis of insulin resistance and β-cell dysfunction, their translational significance is rather limited. Importantly, dietary selenium supplementation does not appear to be a major causal factor for the development of T2DM in humans though we cannot currently exclude a small contribution of selenium on top of other risk factors, in particular if it is ingested at high (supranutritional) doses. Elevated selenium biomarkers that are often measured in T2DM patients are more likely to be a consequence, rather than a cause, of diabetes.

55 citations


Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors used Escherichia coli Nissle 1917 (ECN), a kind of oral probiotic, to overexpress catalase and superoxide dismutase for the treatment of intestinal inflammation.
Abstract: Reactive oxygen species (ROS) play vital roles in intestinal inflammation. Therefore, eliminating ROS in the inflammatory site by antioxidant enzymes such as catalase and superoxide dismutase may effectively curb inflammatory bowel disease (IBD). Here, Escherichia coli Nissle 1917 (ECN), a kind of oral probiotic, was genetically engineered to overexpress catalase and superoxide dismutase (ECN-pE) for the treatment of intestinal inflammation. To improve the bioavailability of ECN-pE in the gastrointestinal tract, chitosan and sodium alginate, effective biofilms, were used to coat ECN-pE via a layer-by-layer electrostatic self-assembly strategy. In a mouse IBD model induced by different chemical drugs, chitosan/sodium alginate coating ECN-pE (ECN-pE(C/A)2) effectively relieved inflammation and repaired epithelial barriers in the colon. Unexpectedly, such engineered EcN-pE(C/A)2 could also regulate the intestinal microbial communities and improve the abundance of Lachnospiraceae_NK4A136 and Odoribacter in the intestinal flora, which are important microbes to maintain intestinal homeostasis. Thus, this study lays a foundation for the development of living therapeutic proteins using probiotics to treat intestinal-related diseases.

54 citations


Journal ArticleDOI
TL;DR: In this paper , an iron-based SANzyme (Fe•SANzyme) was designed by edge site engineering, which intensively exposes edge-hosted defective Fe-N4 atomic sites anchored in hierarchical mesoporous structures.
Abstract: Extensive efforts are devoted to refining metal sites for optimizing the catalytic performance of single‐atom nanozymes (SANzymes), while the contribution of the defect environment of neighboring metal sites lacks attention. Herein, an iron‐based SANzyme (Fe‐SANzyme) is rationally designed by edge‐site engineering, which intensively exposes edge‐hosted defective Fe–N4 atomic sites anchored in hierarchical mesoporous structures. The Fe‐SANzyme exhibits excellent catalase‐like activity capable of efficiently catalyzing the decomposition of H2O2 into O2 and H2O, with a catalytic kinetic KM value superior to that of natural catalase and reported nanozymes. The mechanistic studies depict that the defects introduce notable charge transfer from the Fe atom to the carbon matrix, making the central Fe more activated to strengthen the interaction with H2O2 and weaken the OO bond. By performing catalase‐like catalysis, the Fe‐SANzyme significantly scavenges reactive oxygen species (ROS) and alleviates oxidative stress, thus eliminating the pathological angiogenesis in animal models of retinal vasculopathies without affecting the repair of normal vessels. This work provides a new way to refine SANzymes by engineering the defect environment and geometric structure around metal sites, and demonstrates the potential therapeutic effects of the nanozyme on retinal vasculopathies.

50 citations


Journal ArticleDOI
TL;DR: In this article , the authors found that a high iron diet increased hepatic iron content and promoted glutathione depletion, lipid peroxidation and oxidative stress, which are all markers of ferroptosis.

45 citations


Journal ArticleDOI
TL;DR: In this paper , a pot experiment was conducted to determine the effects of single and/or combined application of sodium nitroprusside (SNP) and sodium hydrogen sulfide (NaHS) on growth, photosynthetic pigments, gas exchange characteristics, oxidative stress biomarkers, antioxidant machinery, ion uptake, organic acid exudation, and Cr uptake of spinach (Spinacia oleracea L.) exposed to severe Cr stress [Cr: 0 (no Cr), 150, and 300 μM].
Abstract: Chromium (Cr) is a toxic heavy metal that contaminates soil and water resources after its discharge from different industries. A pot experiment was conducted to determine the effects of single and/or combined application of sodium nitroprusside (SNP) (250 μM) and sodium hydrogen sulfide (NaHS) (1 mM) on growth, photosynthetic pigments, gas exchange characteristics, oxidative stress biomarkers, antioxidant machinery (enzymatic and non-enzymatic antioxidants), ion uptake, organic acid exudation, and Cr uptake of spinach (Spinacia oleracea L.) exposed to severe Cr stress [Cr: 0 (no Cr), 150, and 300 μM]. Our results depicted that Cr addition to the soil significantly (P < 0.05) decreased plant growth and biomass, gas exchange attributes, and mineral uptake by S. oleracea when compared to the plants grown without the addition of Cr. However, Cr toxicity boosted the production of reactive oxygen species (ROS) by increasing the content of malondialdehyde (MDA), which is the indication of oxidative stress in S. oleracea, and was also manifested by hydrogen peroxide (H2O2) content and electrolyte leakage to the membrane-bound organelles. The results showed that the activities of various antioxidative enzymes, such as superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and the content of non-enzymatic antioxidants, such as phenolic, flavonoid, ascorbic acid, and anthocyanin, initially increased with an increase in the Cr concentration in the soil. The results also revealed that the levels of soluble sugar, reducing sugar, and non-reducing sugar were decreased in plants grown under elevating Cr levels, but the accumulation of the metal in the roots and shoots of S. oleracea, was found to be increased, and the values of bioaccumulation factor were <1 in all the Cr treatments. The negative impacts of Cr injury were reduced by the application of SNP and NaHS (individually or combined), which increased plant growth and biomass, improved photosynthetic apparatus, antioxidant enzymes, and mineral uptake, as well as diminished the exudation of organic acids and oxidative stress indicators in roots of S. oleracea by decreasing Cr toxicity. Here, we conclude that the application of SNP and NaHS under the exposure to Cr stress significantly improved plant growth and biomass, photosynthetic pigments, and gas exchange characteristics; regulated antioxidant defense system and essential nutrient uptake; and balanced organic acid exudation pattern in S. oleracea.

44 citations


Journal ArticleDOI
TL;DR: In this article, the effects of seed priming with selenium nanoparticles (SeNPs) under cadmium (Cd) stress for coriander crop has been evaluated.

41 citations


Journal ArticleDOI
TL;DR: In this article , the effects of seed priming with three levels (0, 5, 10 and 15 mg L−1) of SeNPs solution on the physio-biochemical characteristics, nutrition, antioxidative defense system and growth of coriander under Cd stress was evaluated.

41 citations


Journal ArticleDOI
18 Jan 2022-Biology
TL;DR: Current knowledge on enzymatic and non-enzymatic antioxidant machinery in plants is summarized and additional information about the beneficial impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant tissues has been provided.
Abstract: Simple Summary Environmental conditions are subject to unprecedented changes due to recent progressive anthropogenic activities on our planet. Plants, as the frontline of food security, are susceptible to these changes, resulting in the generation of unavoidable byproducts of metabolism (ROS), which eventually affect their productivity. The response of plants to these unfavorable conditions is highly intricate and depends on several factors, among them are the species/genotype tolerance level, intensity, and duration of stress factors. Defensive mechanisms in plant systems, by nature, are concerned primarily with generating enzymatic and non-enzymatic antioxidants. In addition to this, plant-microbe interactions have been found to improve immune systems in plants suffering from drought and salinity stress. Abstract Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance to biotic and abiotic stimuli. However, intensified environmental challenges such as salinity, drought, UV irradiation, and heavy metals usually interfere with natural ROS metabolism and homeostasis, thus aggravating ROS generation excessively and ultimately resulting in oxidative stress. Cellular damage is confined to the degradation of biomolecular structures, including carbohydrates, proteins, lipids, pigments, and DNA. The nature of the double-edged function of ROS as a secondary messenger or harmful oxidant has been attributed to the degree of existing balance between cellular ROS production and ROS removal machinery. The activities of enzyme-based antioxidants, catalase (CAT, EC 1.11.1.6), monodehydroascorbate reductase (MDHAR, E.C.1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and guaiacol peroxidase (GPX, EC 1.11.1.7); and non-enzyme based antioxidant molecules, ascorbate (AA), glutathione (GSH), carotenoids, α-tocopherol, prolines, flavonoids, and phenolics, are indeed parts of the defensive strategies developed by plants to scavenge excess ROS and to maintain cellular redox homeostasis during oxidative stress. This review briefly summarises current knowledge on enzymatic and non-enzymatic antioxidant machinery in plants. Moreover, additional information about the beneficial impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant tissues has also been provided.

40 citations


Journal ArticleDOI
TL;DR: In this paper , maternal exposure to polystyrene nanoparticles in pregnancy and lactation can cause hepatic and testicular toxicity in male mouse pups, which put forward new understanding into the detrimental effects of nanoplastics on mammalian offspring.

40 citations


Journal ArticleDOI
TL;DR: In this article , single-atom nanozymes of RhN4, VN4 and Fe-Cu-N6 with catalytic activities surpassing natural enzymes were developed.
Abstract: Regenerable nanozymes with high catalytic stability and sustainability are promising substitutes for naturally-occurring enzymes but are limited by insufficient and non-selective catalytic activities. Herein, we developed single-atom nanozymes of RhN4, VN4, and Fe-Cu-N6 with catalytic activities surpassing natural enzymes. Notably, Rh/VN4 preferably forms an Rh/V-O-N4 active center to decrease reaction energy barriers and mediates a "two-sided oxygen-linked" reaction path, showing 4 and 5-fold higher affinities in peroxidase-like activity than the FeN4 and natural horseradish peroxidase. Furthermore, RhN4 presents a 20-fold improved affinity in the catalase-like activity compared to the natural catalase; Fe-Cu-N6 displays selectivity towards the superoxide dismutase-like activity; VN4 favors a 7-fold higher glutathione peroxidase-like activity than the natural glutathione peroxidase. Bioactive sutures with Rh/VN4 show recyclable catalytic features without apparent decay in 1 month and accelerate the scalp healing from brain trauma by promoting the vascular endothelial growth factor, regulating the immune cells like macrophages, and diminishing inflammation.

39 citations


Journal ArticleDOI
TL;DR: In this article , the effects of polyethylene MPs (PEMPs) and polylactic acid MPs (PLAMPs) on physio-biochemical performance and metabolomic profile of soybean (Glycine max), as well as the bacterial communities in soil were investigated.

Journal ArticleDOI
TL;DR: Evidence from the literature is reported describing the effect of NRF2 on ovarian cancer, with a focus on its function in drug resistance,NRF2 natural and synthetic modulators and its protective function in normal ovarian preservation.
Abstract: Among gynaecologic malignancies, ovarian cancer is one of the most dangerous, with a high fatality rate and relapse due to the occurrence of chemoresistance. Many researchers demonstrated that oxidative stress is involved in tumour occurrence, growth and development. Nuclear factor erythroid 2-related factor 2 (NRF2) is an important transcription factor, playing an important role in protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) activate NRF2 signalling, inducing the expression of antioxidant enzymes, such as haem oxygenase (HO-1), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD), that protect cells against oxidative stress. However, NRF2 activation in cancer cells is responsible for the development of chemoresistance, inactivating drug-mediated oxidative stress that normally leads to cancer cells’ death. In this review, we report evidence from the literature describing the effect of NRF2 on ovarian cancer, with a focus on its function in drug resistance, NRF2 natural and synthetic modulators and its protective function in normal ovarian preservation.

Journal ArticleDOI
01 Mar 2022-Biology
TL;DR: In this article , the authors summarized the mechanisms used by plant growth-promoting bacteria and discussed the effects that these organisms have on the growth of plants in the laboratory, the greenhouse, and the field under high salt and/or drought conditions.
Abstract: Simple Summary Salt and drought stress cause enormous crop losses worldwide. Several different approaches may be taken to address this problem, including increased use of irrigation, use of both traditional breeding and genetic engineering to develop salt-tolerant and drought-resistant crop plants, and the directed use of naturally occurring plant growth-promoting bacteria. Here, the mechanisms used by these plant growth-promoting bacteria are summarized and discussed. Moreover, recently reported studies of the effects that these organisms have on the growth of plants in the laboratory, the greenhouse, and the field under high salt and/or drought conditions is discussed in some detail. It is hoped that by understanding the mechanisms that these naturally occurring plant growth-promoting bacteria utilize to overcome damaging environmental stresses, it may be possible to employ these organisms to increase future agricultural productivity. Abstract The recent literature indicates that plant growth-promoting bacteria (PGPB) employ a range of mechanisms to augment a plant’s ability to ameliorate salt and drought stress. These mechanisms include synthesis of auxins, especially indoleacetic acid, which directly promotes plant growth; synthesis of antioxidant enzymes such as catalase, superoxide dismutase and peroxidase, which prevents the deleterious effects of reactive oxygen species; synthesis of small molecule osmolytes, e.g., trehalose and proline, which structures the water content within plant and bacterial cells and reduces plant turgor pressure; nitrogen fixation, which directly improves plant growth; synthesis of exopolysaccharides, which protects plant cells from water loss and stabilizes soil aggregates; synthesis of antibiotics, which protects stress-debilitated plants from soil pathogens; and synthesis of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which lowers the level of ACC and ethylene in plants, thereby decreasing stress-induced plant senescence. Many of the reports of overcoming these plant stresses indicate that the most successful PGPB possess several of these mechanisms; however, the involvement of any particular mechanism in plant protection is nearly always inferred and not proven.

Journal ArticleDOI
TL;DR: The resultant PBNPs@PLEL wound dressing was able to improve diabetic wound healing, decrease ROS production, promote angiogenesis, and reduce pro-inflammatory interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels within diabetic wounds.
Abstract: Diabetic foot ulcer is a serious complication in diabetes patients, imposing a serious physical and economic burden to patients and to the healthcare system as a whole. Oxidative stress is thought to be a key driver of the pathogenesis of such ulcers. However, no antioxidant drugs have received clinical approval to date, underscoring the need for the further development of such medications. Hydrogels can be applied directly to the wound site, wherein they function to prevent infection and maintain local moisture concentrations, in addition to serving as a reservoir for the delivery of a range of therapeutic compounds with the potential to expedite wound healing in a synergistic manner. Herein, we synthesized Prussian blue nanoparticles (PBNPs) capable of efficiently scavenging reactive oxygen species (ROS) owing to their ability to mimic the activity of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). In the context of in vitro oxidative stress, these PBNPs were able to protect against cytotoxicity, protect mitochondria from oxidative stress-related damage, and restore nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) pathway activity. To expand on these results in an in vivo context, we prepared a thermosensitive poly (d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide) (PDLLA-PEG-PDLLA) hydrogel (PLEL)-based wound dressing in which PBNPs had been homogenously incorporated, and we then used this dressing as a platform for controlled PBNP release. The resultant PBNPs@PLEL wound dressing was able to improve diabetic wound healing, decrease ROS production, promote angiogenesis, and reduce pro-inflammatory interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels within diabetic wounds. Overall, our results suggest that this PBNPs@PLEL platform holds great promise as a treatment for diabetic foot ulcers.

Journal ArticleDOI
03 Apr 2022-Small
TL;DR: The MoS2 @Au@BSA nanozyme-anchored injectable hydrogel, composed of oxidized dextran and glycol chitosan crosslinked through a Schiff base, significantly accelerates diabetic wound healing.
Abstract: Diabetic wound healing remains challenging owing to the risk for bacterial infection, hypoxia, excessive glucose levels, and oxidative stress. Glucose-activated cascade reactions can consume glucose and eradicate bacteria, avoiding the direct use of hydrogen peroxide (H2 O2 ) and wound pH restriction on peroxidase-like activity. However, the anoxic microenvironment in diabetic wounds impedes the cascade reaction due to the oxygen (O2 ) dependence of glucose oxidation. Herein, defect-rich molybdenum disulfide nanosheets loaded with bovine serum albumin-modified gold nanoparticle (MoS2 @Au@BSA NSs) heterostructures are designed and anchored onto injectable hydrogels to promote diabetic wound healing through an O2 self-supplying cascade reaction. BSA decoration decreases the particle size of Au, increasing the activity of multiple enzymes. Glucose oxidase-like Au catalyzes the oxidation of glucose into gluconic acid and H2 O2 , which is transformed into a hydroxyl radical (•OH) catalyzed by peroxidase-like MoS2 @Au@BSA to eradicate bacteria. When the wound pH reaches an alkalescent condition, MoS2 @Au@BSA mimicks superoxide dismutase to transform superoxide anions into O2 and H2 O2 , and decomposes endogenous and exogenous H2 O2 into O2 via catalase-like mechanisms, reducing oxidative stress, alleviating hypoxia, and facilitating glucose oxidation. The MoS2 @Au@BSA nanozyme-anchored injectable hydrogel, composed of oxidized dextran and glycol chitosan crosslinked through a Schiff base, significantly accelerates diabetic wound healing.

Journal ArticleDOI
TL;DR: In this article , the role of natural and synthetic compounds in modulating NRF2/KEAP1 (Kelch Like ECH Associated Protein 1) pathway in in vitro models of ovarian cancer was analyzed.
Abstract: Among gynecologic malignancies, ovarian cancer is one of the most dangerous, with a high fatality rate and relapse due to the occurrence of chemoresistance. Many researchers demonstrated that oxidative stress is involved in tumor occurrence, development and procession. Nuclear factor erythroid 2-related factor 2 (NRF2) is an important transcription factor playing an important role in protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) activate NRF2 signaling inducing the expression of antioxidant enzymes such as heme oxygenase (HO-1), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) that protect cells against oxidative stress. However, NRF2 activation in cancer cells is responsible for the development of chemoresistance inactivating drug-mediated oxidative stress that normally leads cancer cells to death. In this review we analyzed the current literature regarding the role of natural and synthetic compounds in modulating NRF2/KEAP1 (Kelch Like ECH Associated Protein 1) pathway in in vitro models of ovarian cancer. In particular, we reported how these compounds can modulate chemotherapy response.

Journal ArticleDOI
TL;DR: In this article , the authors evaluated morphological and physiological responses of two wheat varieties exposed to a broad range of Zn concentrations (0-1000 μM) for 14 days.

Journal ArticleDOI
TL;DR: In this paper , the authors showed that BRD4770 is a novel ferroptosis inhibitor and has equivalent protective effect to Ferrostatin-1 at the optimal concentration for smooth muscle cell (SMC) loss.
Abstract: Smooth muscle cell (SMC) loss is the characteristic feature in the pathogenesis of aortic dissection (AD), and ferroptosis is a novel iron-dependent regulated cell death driven by the excessive lipid peroxidation accumulation. However, whether targeting ferroptosis is an effective approach for SMC loss and AD treatment remains unclear. Here, we found that the iron level, ferroptosis-related molecules TFR, HOMX1, ferritin and the lipid peroxidation product 4-hydroxynonenal were increased in the aorta of AD. Then, we screened several inhibitors of histone methyltransferases and found that BRD4770 had a protective effect on cystine deprivation-, imidazole ketone erastin- or RSL3-induced ferroptosis of SMCs. The classic ferroptosis pathways, System Xc--GPX4, FSP1-CoQ10 and GCH1-BH4 pathways which were inhibited by ferroptosis inducers, were re-activated by BRD4770 via inhibiting mono-, di- and tri- methylated histone H3 at lysine 9 (H3K9me1/2/3). RNA-sequencing analysis revealed that there was a positive feedback regulation between ferroptosis and inflammatory response, and BRD4770 can reverse the effects of inflammation activation on ferroptosis. More importantly, treatment with BRD4770 attenuated aortic dilation and decreased morbidity and mortality in a β-Aminopropionitrile monofumarate-induced mouse AD model via inhibiting the inflammatory response, lipid peroxidation and ferroptosis. Taken together, our findings demonstrate that ferroptosis is a novel and critical pathological mechanism that is involved in SMC loss and AD development. BRD4770 is a novel ferroptosis inhibitor and has equivalent protective effect to Ferrostatin-1 at the optimal concentration. Translating insights into the anti-ferroptosis effects of BRD4770 may reveal a potential therapeutic approach for targeting SMC ferroptosis in AD.

Journal ArticleDOI
TL;DR: In this paper , the authors used Bacillus spp. strains to promote plant growth characteristics including mineral uptake and various phytohormone production by indigenously isolated Bacillus strains.
Abstract: The aim of the present study was to promote plant growth characteristics including mineral uptake and various phytohormone production by indigenously isolated Bacillus spp. strains. Plants subjected to normal and water stress conditions were collected after 21 days to measure physiological parameters, photosynthetic pigment estimation, biochemical attributes, lipid peroxidation and antioxidant enzyme response modulation. Our results correlated with drought stress amelioration with the inoculation of Bacillus spp. strains BEB1, BEB2, BEB3 and BEB4 under sterile soil condition. Inoculated plants of both maize cultivars showed increases in fresh (56.12%) and dry (103.5%) biomass, plant length (42.48%), photosynthetic pigments (32.76%), and biochemical attributes with enhanced nutrient uptake. The overall maize antioxidant response to bacterial inoculation lowered the malonaldehyde level (59.14%), generation of hydrogen peroxide (45.75%) and accumulation of flavonoid contents in both control and water stress condition. Activity of antioxidant enzymes, catalase (62.96%), peroxidase (23.46%), ascorbate peroxidase (24.44%), and superoxide dismutase (55.69%) were also decreased with the application of bacterial treatment. Stress amelioration is dependent on a specific plant–strain interaction evident in the differences in the evaluated biochemical attributes, lipid peroxidation and antioxidant responses. Such bacteria could be used for enhancing the crop productivity and plant protection under biotic and abiotic stresses for sustainable agriculture.

Journal ArticleDOI
TL;DR: In this paper , a 2D metal-organic framework (MOF) was constructed as an artificial antioxidase for nanocatalytic rheumatoid arthritis treatment, which periodically assembles numbers of manganese porphyrin molecules, which has a metal coordination geometry analogous to those of two typical antioxidases.
Abstract: Constructing nanomaterials mimicking the coordination environments of natural enzymes may achieve biomimetic catalysis. Here we construct a two-dimensional (2D) metal-organic framework (MOF) nanosheet catalyst as an artificial antioxidase for nanocatalytic rheumatoid arthritis treatment. The 2D MOF periodically assembles numbers of manganese porphyrin molecules, which has a metal coordination geometry analogous to those of two typical antioxidases, human mitochondrial manganese superoxide dismutase (Mn-SOD) and human erythrocyte catalase. The zinc atoms of the 2D MOF regulate the metal-centered redox potential of coordinated manganese porphyrin ligand, endowing the nanosheet with both SOD- and catalase-like activities. Cellular experiments show unique anti-inflammatory and pro-biomineralization performances of the 2D MOF, while in vivo animal model further demonstrates its desirable antiarthritic efficacy. It is expected that such a nanocatalytic antioxidation concept may provide feasible approaches to future anti-inflammatory treatments.

Journal ArticleDOI
TL;DR: In this article , the authors compared the physiological and biochemical responses of three rice cultivars under salt and drought stress conditions after restricting their cytochrome oxidase and alternative oxidase (AOX) pathways using antimycin A and salicylhydroxamic acid treatment.

Journal ArticleDOI
TL;DR: In this paper , the authors examined the application of silver nanoparticles (AgNPs) in two genotypes (G1 and G2) of Mung bean (Vigna radiata) for ameliorating the Pb toxicity.

Journal ArticleDOI
TL;DR: In this article , the association of polyethylene microplastics (PE-MPs) to a mix of emerging pollutants induces more adverse genotoxic, mutagenic, and redox unbalance effects in adult zebrafish (Danio rerio), after 15 days of exposure.

Journal ArticleDOI
TL;DR: In this paper , the authors evaluated the growth performance, immune responses, and disease resistance of Nile tilapia upon pistachio hulls derived polysaccharide (PHDP) and Pediococcus acidilactici (PA) separately or as synbiotic.

Journal ArticleDOI
TL;DR: The aim of this review is to summarize the structure, function, production strains and biophysical and biochemical properties of GOx in light of its various industrial, biotechnological and medical applications.
Abstract: Glucose oxidase (GOx) is an important oxidoreductase enzyme with many important roles in biological processes. It is considered an “ideal enzyme” and is often called an oxidase “Ferrari” because of its fast mechanism of action, high stability and specificity. Glucose oxidase catalyzes the oxidation of β-d-glucose to d-glucono-δ-lactone and hydrogen peroxide in the presence of molecular oxygen. d-glucono-δ-lactone is sequentially hydrolyzed by lactonase to d-gluconic acid, and the resulting hydrogen peroxide is hydrolyzed by catalase to oxygen and water. GOx is presently known to be produced only by fungi and insects. The current main industrial producers of glucose oxidase are Aspergillus and Penicillium. An important property of GOx is its antimicrobial effect against various pathogens and its use in many industrial and medical areas. The aim of this review is to summarize the structure, function, production strains and biophysical and biochemical properties of GOx in light of its various industrial, biotechnological and medical applications.

Journal ArticleDOI
Qinghua Nie, Yue Hu, Xiao Yu, Xiao Li, Xuedong Fang 
TL;DR: In this article , the authors summarize the latest advances in ferroptosis-induced tumor therapy at the intersection of tumor biology, molecular biology, redox biology, and materials chemistry.
Abstract: At present, more than one cell death pathways have been found, one of which is ferroptosis. Ferroptosis was discovered in 2012 and described as an iron-dependent and lipid peroxidation-driven regulated cell death pathway. In the past few years, ferroptosis has been shown to induce tumor cell death, providing new ideas for tumor treatment. In this article, we summarize the latest advances in ferroptosis-induced tumor therapy at the intersection of tumor biology, molecular biology, redox biology, and materials chemistry. First, we state the characteristics of ferroptosis in cells, then introduce the key molecular mechanism of ferroptosis, and describes the relationship between ferroptosis and oxidative stress signaling pathways. Finally, we focused on several types of ferroptosis inducers discovered by scholars, and the application of ferroptosis in systemic chemotherapy, radiotherapy, immunotherapy and nanomedicine, in the hope that ferroptosis can exert its potential in the treatment of tumors.

Journal ArticleDOI
TL;DR: In this article , a type of biocompatible metal free carbon dots is prepared via a hydrothermal method which can exhibit peroxidase (POD)-like, catalase (CAT)-like and superoxide dismutase (SOD)like activities.

Journal ArticleDOI
TL;DR: In this article , a one-pot hydrothermal strategy for the facile preparation of MoSe2-polyvinylpyrrolidone (PVP) nanoparticles was reported.
Abstract: Exogenous antioxidant materials mimicking endogenous antioxidant systems are commonly used for the treatment of oxidative stress-induced injuries. Thus, artificial enzymes have emerged as promising candidates for balancing and treating the dysregulation of redox homeostasis in vivo. Herein, a one-pot hydrothermal strategy for the facile preparation of MoSe2-polyvinylpyrrolidone (PVP) nanoparticles (NPs) is reported. The synthesized NPs were biodegradable due to their exposure to oxygen and exhibited high stability. Moreover, they effectively mimicked various naturally occurring enzymes (including catalase, superoxide dismutase, peroxidase, and glutathione peroxidase) and scavenged free radicals, such as 3-ethylbenzothiazoline-6-sulfonic acid, ·OH, ·O2-, and 1,1-diphenyl-2-picrylhydrazyl radical. Further apoptosis detection studies revealed that MoSe2-PVP NPs significantly increased the cell survival probability in H2O2 in a concentration-dependent manner. The cytoprotective effect of MoSe2-PVP NPs was explored for an animal model of acute pancreatitis, which confirmed its remarkable therapeutic efficacy. Owing to the biodegradable and biocompatible nature of MoSe2-PVP NPs, the findings of this work can stimulate the development of other artificial nanoenzymes for antioxidant therapies.

Journal ArticleDOI
01 Feb 2022-Plants
TL;DR: In this article , the effects of nano-silicon and silicon on growth, yield, ions content, and antioxidant defense systems, including transcript levels of enzyme-encoding genes in Pisum sativum plants grown under salinity stress, were evaluated.
Abstract: The present study was conducted to evaluate the effects of silicon (Si) and nano-silicon (NSi) on growth, yield, ions content, and antioxidant defense systems, including transcript levels of enzyme-encoding genes in Pisum sativum plants grown under salinity stress. Both Si and NSi were applied at the 3 mM level and NaCl was applied at 4 concentrations (100, 150, 200 and 250 mM). Vegetative growth, including plant height, leaf area, fresh and dry weights, and yield attributes were determined. Gene expression of antioxidant enzymes was analyzed, and their activities were determined. The results showed that salinity had deleterious effects on plant growth and yield. Salt-stressed plant leaves exhibited a greater activity of superoxide dismutase (SOD), peroxidase (POD), but a lower activity of catalase (CAT) when compared to the control. Na+ ions accumulated in roots and shoots of salinized plants. The application of Si and NSi significantly enhanced vegetative growth and relative water content (RWC), and caused significant increases in plant height, fresh and dry weight, total yield, and antioxidant defense systems. Si and NSi enhanced K+ content in roots and shoots under salinity treatment and decreased Na+ content in the studied tissues. It was concluded that the application of NSi was beneficial in improving the salt tolerance of Pisum sativum plants more than Si alone.

Journal ArticleDOI
Zhaojie Cui1
TL;DR: In this article , the authors evaluated the remediation potential of intensified phytoremediation in coping with complex co-contaminated soils and found that the removal of PAHs and heavy metals is time-dependent, pollution-relevant, and plant-specific.