scispace - formally typeset
Search or ask a question

Showing papers on "Dehalococcoides published in 2011"


Journal ArticleDOI
TL;DR: Two studies support a role for Dehalobacter spp.
Abstract: Previously, we demonstrated the reductive dehalogenation of dichlorobenzene (DCB) isomers to monochlorobenzene (MCB), and MCB to benzene in sediment microcosms derived from a chlorobenzene-contaminated site. In this study, enrichment cultures were established for each DCB isomer and each produced MCB and trace amounts of benzene as end products. MCB dehalogenation activity could only be transferred in sediment microcosms. The 1,2-DCB-dehalogenating culture was studied the most intensively. Whereas Dehalococcoides spp. were not detected in any of the microcosms or cultures, Dehalobacter spp. were detected in 16S rRNA gene clone libraries from 1,2-DCB enrichment cultures, and by PCR using Dehalobacter-specific primers in 1,3-DCB and 1,4-DCB enrichments and MCB-dehalogenating microcosms. Quantitative PCR showed Dehalobacter 16S rRNA gene copies increased up to 3 orders of magnitude upon dehalogenation of DCBs or MCB, and that nearly all of bacterial 16S rRNA genes in a 1,2-DCB-dehalogenating culture belonged...

74 citations


Journal ArticleDOI
TL;DR: The growth-coupleddebromination suggests that Dehalococcoides cells in the coculture GY2 are able to respire on PBDEs, and complete debromination of these congeners to less toxic end products is important for the restoration of PBDE-contaminated environments.
Abstract: Polybrominated diphenyl ethers (PBDEs) are widespread global contaminants due to their extensive usage as flame retardants. Among the 209 PBDE congeners, tetra-brominated diphenyl ether (tetra-BDE) (congener 47) and penta-BDEs (congeners 99 and 100) are the most abundant, toxic, and bioaccumulative congeners in the environment. However, little is known about microorganisms that carry out debromination of these congeners under anaerobic conditions. In this study, we describe a coculture GY2 consisting of Dehalococcoides and Desulfovibrio spp., which is capable of debrominating ∼1180 nM of congeners 47, 99, and 100 (88-100% removal) to the nonbrominated diphenyl ether at an average rate of 36.9, 19.8, and 21.9 nM day(-1), respectively. Ortho bromines are preferentially removed during the debromination process. The growth of Dehalococcoides links tightly with PBDE debromination, with an estimated growth yield of 1.99 × 10(14) cells per mole of bromide released, while the growth of Desulfovibrio could be independent of PBDEs. The growth-coupled debromination suggests that Dehalococcoides cells in the coculture GY2 are able to respire on PBDEs. Given the ubiquity and recalcitrance of the tetra- and penta-BDEs, complete debromination of these congeners to less toxic end products (e.g. diphenyl ether) is important for the restoration of PBDE-contaminated environments.

73 citations


Journal ArticleDOI
TL;DR: A novel anaerobic consortium that performs rapid and complete reductive dechlorination of trichloroethene to ethene is described, identifying DehaloR^2 as a promising consortium for use in bioremediation of chlorinated e thene-impacted environments.
Abstract: A novel anaerobic consortium, named DehaloR^2, that performs rapid and complete reductive dechlorination of trichloroethene (TCE) to ethene is described. DehaloR^2 was developed from estuarine sediment from the Back River of the Chesapeake Bay and has been stably maintained in the laboratory for over 2 years. Initial sediment microcosms showed incomplete reduction of TCE to DCE with a ratio of trans- to cis- isomers of 1.67. However, complete reduction to ethene was achieved within 10 days after transfer of the consortium to sediment-free media and was accompanied by a shift to cis-DCE as the prevailing intermediate metabolite. The microbial community shifted from dominance of the Proteobacterial phylum in the sediment to Firmicutes and Chloroflexi in DehaloR^2, containing the genera Acetobacterium, Clostridium, and the dechlorinators Dehalococcoides. Also present were Spirochaetes, possible acetogens, and Geobacter which encompass previously described dechlorinators. Rates of TCE to ethene reductive dechlorination reached 2.83 mM Cl− d−1 in batch bottles with a Dehalococcoides sp. density of 1.54E+11 gene copies per liter, comparing favorably to other enrichment cultures described in the literature and identifying DehaloR^2 as a promising consortium for use in bioremediation of chlorinated ethene-impacted environments.

68 citations


Journal ArticleDOI
TL;DR: Results are of particular interest since strain CBDB1 constitutes, together with the recent isolated strain MB, the unique Dehalococcoides species unable to dechlorinate PCE and TCE beyond DCE.
Abstract: Dehalococcoides sp. strain CBDB1 reductively dechlorinated perchloroethene (PCE) and trichloroethene (TCE) to predominantly trans-1,2-dichloroethene (trans-DCE). Cell counting by direct microscopy showed that strain CBDB1 used PCE and TCE as electron acceptors for respiratory growth obtaining a growth yield of 3.9 × 10(12) cells per mol of chloride released in both cases. PCE and TCE were dechlorinated to trans- and cis-DCE at an average constant ratio of 3.4 (±0.2):1, which is consistent with the ratios found in several trans-DCE-producing sediments and soils containing uncultured Dehalococcoides-like species. Significant carbon isotope fractionation was observed during PCE and TCE reductive dehalogenation. The enrichment factor of TCE (eC = -11.2) was within the range of previously reported values for TCE dechlorination by other Dehalococcoides species although the tceA gene responsible for ethene generation in the latter cultures was absent in strain CBDB1. On the contrary, the enrichment factor of PCE (eC = -1.6) was 3.8-times lower than that obtained for Dehalococcoides sp. strain 195 although both strains shared a high similarity in the pceA gene responsible for PCE dechlorination in strain 195. In addition, the product-related enrichment factors for TCE dehalogenation were calculated based on product isotope signature of the two accumulated products cis-DCE (eC TCE→cis-DCE = -11.0) and trans-DCE (eC TCE→trans-DCE = -15.9). These results are of particular interest since strain CBDB1 constitutes, together with the recent isolated strain MB, the unique Dehalococcoides species unable to dechlorinate PCE and TCE beyond DCE.

66 citations


Journal ArticleDOI
TL;DR: Quantitative PCR targeting 16S rRNA genes and Reductive Dehalogenase genes indicated that Dehalococcoides and Geobacteraceae were enriched concurrently in the TCE-degrading, Fe( III)-reducing sediments, suggesting that Fe(III) reduction may actually help dechlorination.
Abstract: The effects of Fe(III) reduction on TCE, cis-DCE, and VC dechlorination were studied in both contaminated aquifer material and enrichment cultures. The results from sediment batch experiments demonstrated that Fe(III) reduction did not inhibit complete dechlorination. TCE was reduced concurrently with Fe(III) in the first 40 days of the incubations. While all incubations (plus and minus Fe(III)) generated approximately the same mass of ethene within the experimental time frame, Fe(III) speciation (ferrihydrite versus Fe(III)-NTA) had an impact on daughter product distribution and dechlorination kinetics. 16S rRNA gene clone library sequencing identified Dehalococcoides and Geobacteraceae as dominant populations, which included G. lovleyi like organisms. Quantitative PCR targeting 16S rRNA genes and Reductive Dehalogenase genes (tceA, bvcA, vcrA) indicated that Dehalococcoides and Geobacteraceae were enriched concurrently in the TCE-degrading, Fe(III)-reducing sediments. Enrichment cultures demonstrated that soluble Fe(III) had a greater impact on cis-DCE and VC reduction than solid-phase Fe(III). Geobacteraceae and Dehalococcoides were also coenriched in the liquid cultures, and the Dehalococcoides abundance in the presence of Fe(III) was not significantly different from those in the cultures without Fe(III). Hydrogen reached steady-state concentrations most amenable to complete dechlorination very quickly when Fe(III) was present in the culture, suggesting that Fe(III) reduction may actually help dechlorination. This was contrasted to hydrogen levels in nitrate-amended enrichments, in which hydrogen concentration was too low for any chlororespiration.

64 citations


Journal ArticleDOI
TL;DR: Overall, the microarrays are a valuable high-throughput tool for comparative genomics of unsequenced Dehalococcoides-containing samples to provide insights into their gene content and dechlorination functions.
Abstract: Comparative genomics of Dehalococcoides strains and an enrichment were performed using a microarray targeting genes from all available sequenced genomes of the Dehalococcoides genus. The microarray was designed with 4305 probe sets to target 98.6% of the open-reading frames from strains 195, CBDB1, BAV1 and VS. The microarrays were validated and applied to query the genomes of two recently isolated Dehalococcoides strains, ANAS1 and ANAS2, and their enrichment source (ANAS) to understand the genome–physiology relationships. Strains ANAS1 and ANAS2 can both couple the reduction of trichloroethene, cis-dichloroethene (DCE) and 1,1-DCE, but not tetrachloroethene and trans-DCE with growth, whereas only strain ANAS2 couples vinyl chloride reduction to growth. Comparative genomic analysis showed that the genomes of both strains are similar to each other and to strain 195, except for genes that are within the previously defined integrated elements or high-plasticity regions. Combined results of the two isolates closely matched the results obtained using genomic DNA of the ANAS enrichment. The genome similarities, together with the distinct chlorinated ethene usage of strains ANAS1, ANAS2 and 195 demonstrate that closely phylogenetically related strains can be physiologically different. This incongruence between physiology and core genome phylogeny seems to be related to the presence of distinct reductive dehalogenase-encoding genes with assigned chlorinated ethene functions (pceA, tceA in strain 195; tceA in strain ANAS1; vcrA in strain ANAS2). Overall, the microarrays are a valuable high-throughput tool for comparative genomics of unsequenced Dehalococcoides-containing samples to provide insights into their gene content and dechlorination functions.

63 citations


Journal ArticleDOI
TL;DR: The vcrABC -containing genomic islands are a recently-acquired subset of a diverse collection of ssrA-specific mobile elements that are a major contributor to strain-level diversity in Dehalococcoides, and may have been throughout its evolution.
Abstract: Vinyl chloride is a widespread groundwater pollutant and Group 1 carcinogen. A previous comparative genomic analysis revealed that the vinyl chloride reductase operon, vcrABC, of Dehalococcoides sp. strain VS is embedded in a horizontally-acquired genomic island that integrated at the single-copy tmRNA gene, ssrA. We targeted conserved positions in available genomic islands to amplify and sequence four additional vcrABC -containing genomic islands from previously-unsequenced vinyl chloride respiring Dehalococcoides enrichments. We identified a total of 31 ssrA-specific genomic islands from Dehalococcoides genomic data, accounting for 47 reductive dehalogenase homologous genes and many other non-core genes. Sixteen of these genomic islands contain a syntenic module of integration-associated genes located adjacent to the predicted site of integration, and among these islands, eight contain vcrABC as genetic 'cargo'. These eight vcrABC -containing genomic islands are syntenic across their ~12 kbp length, but have two phylogenetically discordant segments that unambiguously differentiate the integration module from the vcrABC cargo. Using available Dehalococcoides phylogenomic data we estimate that these ssrA-specific genomic islands are at least as old as the Dehalococcoides group itself, which in turn is much older than human civilization. The vcrABC -containing genomic islands are a recently-acquired subset of a diverse collection of ssrA-specific mobile elements that are a major contributor to strain-level diversity in Dehalococcoides, and may have been throughout its evolution. The high similarity between vcrABC sequences is quantitatively consistent with recent horizontal acquisition driven by ~100 years of industrial pollution with chlorinated ethenes.

61 citations


Journal ArticleDOI
TL;DR: Temperature stress caused the up-regulation of Dhc reductive dehalogenase gene expression indicating that Dhc gene expression measurements should be interpreted cautiously as Dhc biomarker gene transcript abundances may not correlate with dechlorination activity.
Abstract: Coupling thermal treatment with microbial reductive dechlorination is a promising remedy for tetrachloroethene (PCE) and trichloroethene (TCE) contaminated source zones. Laboratory experiments evaluated Dehalococcoides (Dhc) dechlorination performance, viability, and biomarker gene (DNA) and transcript (mRNA) abundances during exposure to elevated temperatures. The PCE-dechlorinating consortia BDI and OW produced ethene when incubated at temperatures of 30 °C, but vinyl chloride (VC) accumulated when cultures were incubated at 35 or 40 °C. Cultures incubated at 40 °C for less than 49 days resumed VC dechlorination following cooling; however, incubation at 45 °C resulted in complete loss of dechlorination activity. Dhc 16S rRNA, bvcA, and vcrA gene abundances in cultures showing complete dechlorination to ethene at 30 °C exceeded those measured in cultures incubated at higher temperatures, consistent with observed dechlorination activities. Conversely, biomarker gene transcript abundances per cell in cultures incubated at 35 and 40 °C were generally at least one order-of-magnitude greater than those measured in ethene-producing cultures incubated at 30 °C. Even in cultures accumulating VC, transcription of the vcrA gene, which is implicated in VC-to-ethene dechlorination, was up-regulated. Temperature stress caused the up-regulation of Dhc reductive dehalogenase gene expression indicating that Dhc gene expression measurements should be interpreted cautiously as Dhc biomarker gene transcript abundances may not correlate with dechlorination activity.

49 citations


Journal ArticleDOI
TL;DR: The results indicate that 16S rRNA gene-based phylogenetic analyses have a limit in their ability to distinguish the effects of two haloprimer treatments and that two of rdh genes were present in high abundance when microcosms were amended with PCNB, but not TeCB, and that these two rDH genes originated from the Pinellas subgroup of Dehalococcoides spp.
Abstract: Microbial reductive dechlorination by members of the phylum Chloroflexi, including the genus Dehalococcoides, may play an important role in natural detoxification of highly chlorinated environmental pollutants, such as polychlorinated biphenyls (PCBs). Previously, we showed the increase of an indigenous bacterial population belonging to the Pinellas subgroup of Dehalococcoides spp. in Anacostia River sediment (Washington DC, USA) microcosms treated with halogenated co-substrates ("haloprimers"), tetrachlorobenzene (TeCB), or pentachloronitrobenzene (PCNB). The PCNB-amended microcosms exhibited enhanced dechlorination of weathered PCBs, while TeCB-amended microcosms did not. We therefore developed and used different phylogenetic approaches to discriminate the effect of the two different haloprimers. We also developed complementary approaches to monitor the effects of haloprimer treatments on 12 putative reductive dehalogenase (rdh) genes common to Dehalococcoides ethenogenes strain 195 and Dehalococcoides sp. strain CBDB1. Our results indicate that 16S rRNA gene-based phylogenetic analyses have a limit in their ability to distinguish the effects of two haloprimer treatments and that two of rdh genes were present in high abundance when microcosms were amended with PCNB, but not TeCB. rdh gene-based phylogenetic analysis supports that these two rdh genes originated from the Pinellas subgroup of Dehalococcoides spp., which corresponds to the 16S rRNA gene-based phylogenetic analysis.

46 citations


Journal ArticleDOI
TL;DR: Using isotopomer-based dilution analysis with 13C-labeled acetate to differentiate the amino acids taken up by strain 195 from those synthesized de novo and to determine the physiological changes caused by the significantly incorporated amino acids showed that glutamate/glutamine and aspartate/asparagine were almost exclusively synthesized by strain195.
Abstract: Bacteria of the genus Dehalococcoides are important members of bioremediation communities because of their ability to detoxify chloroethenes to the benign end product ethene. Genome-enabled studies conducted with Dehalococcoides ethenogenes 195 have revealed that two ATP-binding cassette (ABC)-type amino acid transporters are expressed during its exponential growth stages. In light of previous findings that Casamino Acids enhanced its dechlorination activity, we hypothesized that strain 195 is capable of importing amino acids from its environment to facilitate dechlorination and growth. To test this hypothesis, we applied isotopomerbased dilution analysis with 13 C-labeled acetate to differentiate the amino acids that were taken up by strain 195 from those synthesized de novo and to determine the physiological changes caused by the significantly incorporated amino acids. Our results showed that glutamate/glutamine and aspartate/asparagine were almost exclusively synthesized by strain 195, even when provided in excess in the medium. In contrast, phenylalanine, isoleucine, leucine, and methionine were identified as the four most highly incorporated amino acids, at levels >30% of respective proteinogenic amino acids. When either phenylalanine or all four highly incorporated amino acids were added to the defined mineral medium, the growth rates, dechlorination activities, and yields of strain 195 were enhanced to levels similar to those observed with supplementation with 20 amino acids. However, genes for the putative ABC-type amino acids transporters and phenylalanine biosynthesis exhibited insignificant regulation in response to the imported amino acids. This study also demonstrates that using isotopomer-based metabolite analysis can be an efficient strategy for optimizing nutritional conditions for slow-growing microorganisms.

40 citations


Journal ArticleDOI
TL;DR: Compound-specific stable isotope analysis (CSIA) may be a valuable approach for monitoring in situ cis-DCE and VC reductive dechlorination, and ε values determined are all within the same order-of-magnitude.
Abstract: Compound-specific stable isotope analysis (CSIA) is a promising tool for monitoring in situ microbial activity, and enrichment factors (e values) determined using CSIA can be employed to estimate compound transformation. Although e values for some dechlorination reactions catalyzed by Dehalococcoides (Dhc) have been reported, reproducibility between independent experiments, variability between different Dhc strains, and congruency between pure and mixed cultures are unknown. In experiments conducted with pure cultures of Dhc sp. strain BAV1, e values for 1,1-DCE, cis-DCE, trans-DCE, and VC were -5.1, -14.9, -20.8, and -23.2‰, respectively. The e value for 1,1-DCE dechlorination was 48.9% higher than the value reported in a previous study, but e values for other chlorinated ethenes were equal between independent experiments. For the dechlorination of cis-DCE and VC by Dhc strains BAV1, FL2, GT, and VS, average e values were -18.4 and -23.2‰, respectively. cis-DCE and VC e values determined in pure Dhc cultures with different reductive dehalogenase genes (e.g., vcrA vs bvcA) varied by less than 36.8 and 8.3%, respectively. In the BDI consortium, e values for cis-DCE and VC dechlorination were -25.3‰ and -19.9‰, 31.6% higher and 15.3% lower, respectively, compared to the average e value for Dhc pure cultures. As cis-DCE and VC e values are all within the same order-of-magnitude and fractionation is always measured during Dhc dechlorination, CSIA may be a valuable approach for monitoring in situ cis-DCE and VC reductive dechlorination.

Journal ArticleDOI
TL;DR: It is indicated that dechlorination of tetrachloroethene by bacteria can take place in an organic-rich clayey aquitard, and that organic- rich clay may also be important in the natural attenuation in an adjacent aquifer, possibly supplying a carbon source or an electron donor.

Journal ArticleDOI
TL;DR: The results suggest that tidal flats harbor novel, salt-tolerant dechlorinating populations and that titanium pyrosequencing provides more detailed insight into community structure dynamics of the de chlorinating microcosms than conventional 16S rRNA gene sequencing or fingerprinting methods.
Abstract: Tetrachloroethene (PCE) and trichloroethene (TCE) are common groundwater contaminants that also impact tidal flats, especially near urban and industrial areas. However, very little is known about dechlorinating microbial communities in tidal flats. Titanium pyrosequencing, 16S rRNA gene clone libraries, and dechlorinator-targeted quantitative real-time PCR (qPCR) characterized reductive dechlorinating activities and populations in tidal flat sediments collected from South Korea’s central west coast near Kangwha. In microcosms established with surface sediments, PCE dechlorination to TCE began within 10 days and 100% of the initial amount of PCE was converted to TCE after 37 days. cis-1,2-Dichloroethene (cis-DCE) was observed as dechlorination end product in microcosms containing sediments collected from deeper zones (i.e., 35–40 cm below ground surface). Pyrosequencing of bacterial 16S rRNA genes and 16S rRNA gene-targeted qPCR results revealed Desulfuromonas michiganensis-like populations predominanted in both TCE and cis-DCE producing microcosms. Other abundant groups included Desulfuromonas thiophila and Pelobacter acidigallici-like populations in the surface sediment microcosms, and Desulfovibrio dechloracetivorans and Fusibacter paucivorans-like populations in the deeper sediment microcosms. Dehalococcoides spp. populations were not detected in these sediments before and after incubation with PCE. The results suggest that tidal flats harbor novel, salt-tolerant dechlorinating populations and that titanium pyrosequencing provides more detailed insight into community structure dynamics of the dechlorinating microcosms than conventional 16S rRNA gene sequencing or fingerprinting methods.

Journal ArticleDOI
TL;DR: It is shown that changes of the bacterial communities, the distribution of putative dechlorinating bacteria and in situ biodegradation at the border of a chloroethenes plume (Bitterfeld, Germany) are related to local hydrogeochemical conditions.
Abstract: The variability of hydrogeochemical conditions can affect groundwater microbial communities and the natural attenuation of organic chemicals in contaminated aquifers It is suspected that in situ biodegradation in anoxic plumes of chloroethenes depends on the spatial location of the contaminants and the electron donors and acceptors, as well as the patchiness of bacterial populations capable of reductive dechlorination However, knowledge about the spatial variability of bacterial communities and in situ biodegradation of chloroethenes in aquifers is limited Here, we show that changes of the bacterial communities, the distribution of putative dechlorinating bacteria and in situ biodegradation at the border of a chloroethenes plume (Bitterfeld, Germany) are related to local hydrogeochemical conditions Biotic reductive dechlorination occurred along a 50 m vertical gradient, although significant changes of the hydrogeochemistry and contaminant concentrations, bacterial communities and distribution of putative dechlorinating bacteria (Dehalobacter spp, Desulfitobacterium spp, Dehalococcoides spp, and Geobacter spp) were observed The occurrence and variability of in situ biodegradation of chloroethenes were revealed by shifts in the isotope compositions of the chloroethenes along the vertical gradient (δ13C ranging from −144‰ to −44‰) Our results indicate that habitat characteristics were compartmentalized along the vertical gradient and in situ biodegradation occurred with specific reaction conditions at discrete depth The polyphasic approach that combined geochemical and biomolecular methods with compound-specific analysis enabled to characterize the spatial variability of hydrochemistry, bacterial communities and in situ biodegradation of chloroethenes in a heterogeneous aquifer

Journal ArticleDOI
TL;DR: The presence of chloroethene dechlorination activity as well as several bacterial genera containing mainly organohalide-respiring members was investigated in 34 environmental samples from 18 different sites and suggested that chloroethylene dechlorinated cis-DCE and VC was probably the result of catalysis by at least two organoh alchemical genera either in parallel or by stepwise catalysis.
Abstract: The presence of chloroethene dechlorination activity as well as several bacterial genera containing mainly organohalide-respiring members was investigated in 34 environmental samples from 18 different sites. Cultures inoculated with these environmental samples on tetrachloroethene and amended weekly with a seven organic electron donor mixture resulted in 11 enrichments with cis-DCE, ten with VC, and 11 with ethene as dechlorination end product, and only two where no dechlorination was observed. "Dehalococcoides" spp. and Desulfitobacterium spp. were detected in the majority of the environmental samples independently of the dechlorination end product formed. The concomitant presence of Dehalococcoides spp. and Desulfitobacterium spp. in the majority of the enrichments suggested that chloroethene dechlorination was probably the result of catalysis by at least two organohalide-respiring genera either in parallel or by stepwise catalysis. A more detailed study of one enrichment on cis-DCE suggested that in this culture Desulfitobacterium spp. as well as Dehalococcoides spp. dechlorinated cis-DCE whereas dechlorination of VC was only catalyzed by the latter.

Journal ArticleDOI
TL;DR: An in silico analysis of the expected probe hybridization against the recently released Dehalococcoides strain GT genome and additional KB-1 metagenome sequence data indicated that the pangenome probe set performs more robustly than the combined strain-specific probe sets in the detection of genes not included in the original design.
Abstract: Dehalococcoides spp. are an industrially relevant group of Chloroflexi bacteria capable of reductively dechlorinating contaminants in groundwater environments. Existing Dehalococcoides genomes revealed a high level of sequence identity within this group, including 98 to 100% 16S rRNA sequence identity between strains with diverse substrate specificities. Common molecular techniques for identification of microbial populations are often not applicable for distinguishing Dehalococcoides strains. Here we describe an oligonucleotide microarray probe set designed based on clustered Dehalococcoides genes from five different sources (strain DET195, CBDB1, BAV1, and VS genomes and the KB-1 metagenome). This “pangenome” probe set provides coverage of core Dehalococcoides genes as well as strain-specific genes while optimizing the potential for hybridization to closely related, previously unknown Dehalococcoides strains. The pangenome probe set was compared to probe sets designed independently for each of the five Dehalococcoides strains. The pangenome probe set demonstrated better predictability and higher detection of Dehalococcoides genes than strain-specific probe sets on nontarget strains with

Journal ArticleDOI
TL;DR: It is reported that a Re face-specific citrate synthase is synthesized by Dehalococcoides strain CBDB1 and that this function is encoded by the gene cbdbA1708 (NCBI accession number CAI83711), previously annotated as encoding homocitrates synthase.
Abstract: The genome annotations of all sequenced Dehalococcoides strains lack a citrate synthase, although physiological experiments have indicated that such an activity should be encoded. We here report that a Re face-specific citrate synthase is synthesized by Dehalococcoides strain CBDB1 and that this function is encoded by the gene cbdbA1708 (NCBI accession number CAI83711), previously annotated as encoding homocitrate synthase. Gene cbdbA1708 was heterologously expressed in Escherichia coli, and the recombinant enzyme was purified. The enzyme catalyzed the condensation of oxaloacetate and acetyl coenzyme A (acetyl-CoA) to citrate. The protein did not have homocitrate synthase activity and was inhibited by citrate, and Mn2+ was needed for full activity. The stereospecificity of the heterologously expressed citrate synthase was determined by electrospray ionization liquid chromatography-mass spectrometry (ESI LC/MS). Citrate was synthesized from [2-(13)C]acetyl-CoA and oxaloacetate by the Dehalococcoides recombinant citrate synthase and then converted to acetate and malate by commercial citrate lyase plus malate dehydrogenase. The formation of unlabeled acetate and 13C-labeled malate proved the Re face-specific activity of the enzyme. Shotgun proteome analyses of cell extracts of strain CBDB1 demonstrated that cbdbA1708 is expressed in strain CBDB1.

Journal ArticleDOI
TL;DR: Careful selection of biotreatment conditions, possibly with the help of a model such as the one presented herein, is required to minimize the production of partially dechlorinated intermediates.
Abstract: Anaerobic bioreactors containing Dehalococcoides spp. can be effective for the treatment of trichloroethene (TCE) contamination. However, reductive dehalogenation of TCE often results in partial co...

Journal ArticleDOI
TL;DR: A dechlorinating consortium able to convert trichloroethene to ethene was established from TCE-contaminated groundwater, and it was revealed that the gene copy numbers of tceA, vcrA, and bvcA increased up to 10⁷ copy/mL, indicating that Dehalococcoides spp.
Abstract: A dechlorinating consortium (designated as TES-1 culture) able to convert trichloroethene (TCE) to ethene was established from TCE-contaminated groundwater. This culture had the ability of complete dechlorination of TCE within about one month. From the clone library analysis of 16S rRNA gene, this culture was mainly composed of fermentation bacteria, such as Clostridium spp., and Desulfitobacterium spp. known as facultative dechlorinator. PCR using specific primers for Dehalococcoides spp. and the dehalogenase genes confirmed that the culture contained the Dehalococcoides spp. 16S rRNA gene and three dehalogenase genes, tceA, vcrA and bvcA. Dechlorination experiments using cis-dichloroethene (cis-DCE) at concentrations of 37-146 μM, revealed that the gene copy numbers of tceA, vcrA, and bvcA increased up to 10⁷ copy/mL, indicating that Dehalococcoides spp. containing these three dehalogenase genes were involved in cis-DCE dechlorination. However, in the culture to which 292 μM of cis-DCE was added, only the tceA gene and the Dehalococcoides spp. 16S rRNA gene increased up to 10⁷ copy/mL. The culture containing 292 μM of cis-DCE also exhibited about one tenth slower ethene production rate compared to the other cultures.

Journal ArticleDOI
TL;DR: The results suggest that methanogens and sulfate-reducing bacteria can play a significant role in dechlorination by “Dehalococcoides.”
Abstract: A microbial consortium that reductively dechlorinates trichloroethene, cis-1,2-dichloroethene (cis-DCE), and vinyl chloride (VC) to ethene with methanogenesis was enriched from chloroethene-contaminated soil from Japan. Dechlorination activity was maintained for over 4 years. Using quantitative polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) analysis targeting the “Dehalococcoides” 16S rRNA gene, four strains were detected. Their growth and dechlorination activities were classified into two types: one that grows by converting cis-DCE to ethene and the other that grows by converting cis-DCE to VC. Then, the vcrA and bvcA genes encoding cis-DCE/VC reductive dehalogenases were detected. Inhibitors of methanogenesis (2-bromoethanesulfonate) and sulfidogenesis (molybdate) led to accumulation of cis-DCE and of VC respectively. These results suggest that methanogens and sulfate-reducing bacteria can play a significant role in dechlorination by “Dehalococcoides.”

Journal ArticleDOI
TL;DR: The role of Dehalococcoides spp.
Abstract: The diffuse pollution by chlorinated organic compounds in river basins is a concern, due to their potential adverse effects on human health and the environment. Organohalides, like hexachlorobenzene (HCB), are recalcitrant to aerobic microbial degradation, and "Dehalococcoides" spp. are the only known microorganisms capable of anaerobic transformation of these compounds coupled to their growth. In this study, sediments from four European rivers were studied in order to determine their HCB dechlorination capacities and the role of Dehalococcoides spp. in this process. Only a weak correlation was observed between Dehalococcoides species abundance and HCB transformation rates from different locations. In one of these locations, in the Ebro River sediment, HCB dechlorination could be linked to Dehalococcoides species growth and activity by 16S rRNA-based molecular methods. Furthermore, HCB dechlorination activity in this sediment was found over the full range of ambient temperatures that this sediment can be exposed to during different seasons throughout the year. The sediment contained several reductive dehalogenase (rdh) genes, and analysis of their transcription revealed the dominance of cbrA, previously shown to encode a trichlorobenzene reductive dehalogenase. This study investigated the role of Dehalococcoides spp. in HCB dechlorination in river sediments and evaluated if the current knowledge of rdh genes could be used to assess HCB bioremediation potential.

01 Feb 2011
TL;DR: The results of nucleic acid-based tests, like the qPCR approach, are expected to assist site managers and practitioners to identify sites where implementation of long-term monitored natural attenuation (MNA) will be effective; where biostimulation will achieve complete dechlorination without DCE/VC "stall"; and where bioaugmentation is required as discussed by the authors.
Abstract: : Successful anaerobic bioremediation at chlorinated solvent sites relies on the presence of bacteria, such as Dehalococcoides (Dhc), capable of organohalide respiration (ie, respiratory reductive dechlorination or "[de]chlororespiration") Nucleic acid-based assays like the quantitative real-time polymerase chain reaction (qPCR) technique detect and enumerate Dhc in soil or groundwater samples by targeting Dhc-specific biomarker genes, including the 16S rRNA gene and the tceA, bvcA, and vcrA reductive dechlorinase (RDase) genes implicated in chlorinated ethene reductive dechlorination The results of nucleic acid-based tests, like the qPCR approach, are expected to assist site managers and practitioners to identify sites where implementation of long-term monitored natural attenuation (MNA) will be effective; where biostimulation will achieve complete dechlorination without DCE/VC "stall"; and where bioaugmentation is required

Journal ArticleDOI
Miao Hu1, Ying Zhang1, Zhigang Wang1, Zhao Jiang1, Juan Li1 
TL;DR: The results indicated that TCE was more rapidly degraded in the presence of humic acid compared with the control and the TCE removal efficiencies increased with the increase of concentrations ofhumic acid.

Journal ArticleDOI
TL;DR: Biostimulation of indigenous PCB dechlorinators by the periodic amendment of contaminated sediments with low dosages of iron metal may be an effective technology for remediation of PCB-contaminated sediments.
Abstract: Reductive dehalogenation of polychlorinated biphenyls (PCBs) by indigenous dehalorespiring microorganisms in contaminated sediments may be enhanced via biostimulation by supplying hydrogen generated through the anaerobic corrosion of elemental iron added to the sediment. In this study, the effect of periodic amendment of sediment with various dosages of iron on the microbial community present in sediment was investigated using phospholipid fatty acid analysis (PLFA) over a period of 18 months. Three PCB-contaminated sediments (two freshwater lake sediments and one marine sediment) were used. Signature biomarker analysis of the microbial community present in all three sediments revealed the enrichment of Dehalococcoides species, the population of which was sustained for a longer period of time when the sediment microcosms were amended with the lower dosage of iron (0.01 g iron per g dry sediment) every 6 months as compared to the blank system (without iron). Lower microbial stress levels were reported for the system periodically amended with 0.01 g of iron per g dry sediment every 6 months, thus reducing the competition from other hydrogen-utilizing microorganisms like methanogens, iron reducers, and sulfate reducers. The concentration of hydrogen in the system was found to be an important factor influencing the shift in microbial communities in all sediments with time. Periodic amendment of sediment with larger dosages of iron every 3 months resulted in the early prevalence of Geobacteraceae and sulfate-reducing bacteria followed by methanogens. An average pH of 8.4 (range of 8.2–8.6) and an average hydrogen concentration of 0.75% (range of 0.3–1.2%) observed between 6 and 15 months of the study were found to be conducive to sustaining the population of Dehalococcoides species in the three sediments amended with 0.01 g iron per g dry sediment. Biostimulation of indigenous PCB dechlorinators by the periodic amendment of contaminated sediments with low dosages of iron metal may therefore be an effective technology for remediation of PCB-contaminated sediments.

Journal ArticleDOI
TL;DR: A constructed wetland able to treat monochlorobenzene contaminated groundwater to a mixture of MCB and tetrachloroethene, representing low and high chlorinated model VOC was adapted, showing a very slow system adaptation.
Abstract: Mixed groundwater contaminations by chlorinated volatile organic compounds (VOC) cause environmental hazards if contaminated groundwater discharges into surface waters and river floodplains. Constructed wetlands (CW) or engineered natural wetlands provide a promising technology for the protection of sensitive water bodies. We adapted a constructed wetland able to treat monochlorobenzene (MCB) contaminated groundwater to a mixture of MCB and tetrachloroethene (PCE), representing low and high chlorinated model VOC. Simultaneous treatment of both compounds was efficient after an adaptation time of 2 1/2 years. Removal of MCB was temporarily impaired by PCE addition, but after adaptation a MCB concentration decrease of up to 64% (55.3 micromol L(-1)) was observed. Oxygen availability in the rhizosphere was relatively low, leading to sub-optimal MCB elimination but providing also appropriate conditions for PCE dechlorination. PCE and metabolites concentration patterns indicated a very slow system adaptation. However, under steady state conditions complete removal of PCE inflow concentrations of 10-15 micromol L(-1) was achieved with negligible concentrations of chlorinated metabolites in the outflow. Recovery of total dechlorination metabolite loads corresponding to 100%, and ethene loads corresponding to 30% of the PCE inflow load provided evidence for complete reductive dechlorination, corroborated by the detection of Dehalococcoides sp.

Journal ArticleDOI
TL;DR: The findings of an examination on the influence of anthraquinone-2,6-disulfonate (AQDS) on the degradation of trichloroethene (TCE) by Dehalococcoides-containing consortium (designated UC-1) indicated that AQDS might improve the activity of organisms in dechlorinating populations which resulted in more ethene being accumulated in the medium.

Journal ArticleDOI
TL;DR: Diversity in the reductive and hydrolytic gene primers provided strong evidence that bacteria capable of dehalogenation of chlorinated hydrocarbons may be present in sites contaminated with these compounds.
Abstract: In recent years large quantities of mixtures of chlorinated hydrocarbons have accumulated in the environment due to the widespread use and production of these compounds. Microbes have been found to demonstrate a widespread and diverse potential to adapt to the dechlorination of such compounds. Therefore the aim of this study was to investigate the presence and diversity of reductive and hydrolytic dehalogenase genes in a site contaminated with a mixture of chlorinated hydrocarbons. Primers targeting reductive and hydrolytic bacterial dehalogenase genes were designed. In addition, DGGE analysis was performed in order to determine the presence of any known dehalogenase-producing organisms. Total DNA isolated from borehole water samples was used as the template for the amplification reactions. All PCR products obtained with the reductive and hydrolytic gene primers, as well as the dominant bands present on the DGGE gel were cloned and sequenced. Sequencing of the individual amplicons revealed significant identities to the tceA gene of Dehalococcoides ethenogenes 195, the vcrA gene of Dehalococcoides sp. VS as well as the dhlA and dhlB genes of Xanthobacter autotrophicus GJ10. DGGE analysis indicated a high level of commonality with the different sampling times and depths. However, sequence analysis revealed that 66% of the cloned fragments showed significant (95–99%) identity with uncultured microorganisms. Phylogenetic analysis of the sequences revealed that the DGGE clones clustered into two groups when compared to known bacteria having hydrocarbon degradative capabilities. This indicated that the sequences of the clones were diverse when compared to known microorganisms. This diversity represents a largely untapped genetic pool that can be exploited for the discovery of novel biocatalysts that can be employed in bioremediation. In addition, the presence of both hydrolytic and reductive dehalogenases provided strong evidence that bacteria capable of dehalogenation of chlorinated hydrocarbons may be present in sites contaminated with these compounds.


Journal Article
TL;DR: In this paper, the authors focused on identification and quantification of natural attenuation of chlorinated ethenes in a contaminated aquifer beneath an industrial area using compound specific isotope analysis (CSIA).
Abstract: This work focused on identification and quantification of natural attenuation of chlorinated ethenes in a contaminated aquifer beneath an industrial area using compound specific isotope analysis (CSIA). Presence of cis-1,2-dichloroethene (cis-DCE) and vinylchloride (VC), as well as in situ redox conditions indicated degradation of the primary contaminant trichloroethene (TCE) by reductive dechlorination. The potential for VC degradation was further corroborated by PCR-analysis on water samples which confirmed the presence of Dehalococcoides strains and VC reductases. In situ biodegradation was estimated by various approaches, including concentration measurements along the groundwater flow path, microcosm studies and by compound specific stable carbon isotope analysis. Using the Rayleigh model carbon isotope enrichment factors, e, were determined both in the field and in microcosm experiments for each dechlorination step. Estimates of biodegradation based on enrichment factors derived from microcosms (―8.6‰ (cis-DCE) and ―27.2‰ (VC)) were consistently lower (up to 40%) than those based on field data. Our results of the isotope study at field scale, microcosm experiments and molecular marker analysis provided conclusive information on natural attenuation processes and can be recommended as a general approach for site characterisation and risk assessment in NA studies.

Journal Article
TL;DR: In this article, the authors demonstrate the potential for microbial reductive dechlorination of chlorinated ethenes in an oxic aquifer by establishing reducing conditions and supplementing fermentable substrates.
Abstract: The aim of the study was to demonstrate the stimulation of reductive dehalogenation of chlorinated ethenes in an oxic aquifer. Microcosms with aquifer material were amended with different organic substrates as electron donors in order to stimulate microbial reductive dechlorination. Next to molasses and lactate a commercial product was applied, which has been described as controlled-release carbon zero valent iron particles (EHC™). In addition, vitamins and bicarbonate buffer were added to the microcosms to further stimulate growth of halorespiring microorganisms. Reductive dechlorination was followed by measuring chlorinated ethene concentrations and their stable carbon isotope fractionation. The microbiological community was monitored by terminal restriction fragment length polymorphism (T-RFLP). The EHC amended microcosms showed only incomplete conversion of PCE, resulting in an accumulation of cis-DCE after incubation for 103 days. In the microcosms amended with molasses, complete reductive dechlorination of PCE to ethene was observed within 56 days. The degradation of the less chlorinated ethenes correlated with the appearance of Dehalococcoides microorganisms and carbon isotope fractionation. Also one of the parallel set-ups amended with lactate showed complete dechlorination. In this microcosm an isotopic overtaking of VC was observed, proving complete microbiological degradation to ethene. Control microcosms without substrate addition showed no dechlorination during the whole experiment. Our study demonstrates that the potential for microbial reductive dechlorination was present and can be stimulated in an oxic aquifer by establishing reducing conditions and supplementing fermentable substrates.