scispace - formally typeset
Search or ask a question

Showing papers on "FABP7 published in 2020"


Journal ArticleDOI
03 Jul 2020-Glia
TL;DR: The data show that FABP7 overexpression directly promotes an NF‐κB‐driven pro‐inflammatory response in nontransgenic astrocytes that ultimately is detrimental for motor neuron survival and identifies FABp7 as a potential therapeutic target to preventAstrocyte‐mediated motor neuron toxicity in ALS.
Abstract: Fatty acid binding proteins (FABPs) are key regulators of lipid metabolism, energy homeostasis, and inflammation. They participate in fatty acid metabolism by regulating their uptake, transport, and availability of ligands to nuclear receptors. In the adult brain, FABP7 is especially abundant in astrocytes that are rich in cytoplasmic granules originated from damaged mitochondria. Mitochondrial dysfunction and oxidative stress have been implicated in the neurodegenerative process observed in amyotrophic lateral sclerosis (ALS), either as a primary cause or as a secondary component of the pathogenic process. Here we investigated the expression of FABP7 in animal models of human superoxide dismutase 1 (hSOD1)-linked ALS. In the spinal cord of symptomatic mutant hSOD1-expressing mice, FABP7 is upregulated in gray matter astrocytes. Using a coculture model, we examined the effect of increased FABP7 expression in astrocyte-motor neuron interaction. Our data show that FABP7 overexpression directly promotes an NF-κB-driven pro-inflammatory response in nontransgenic astrocytes that ultimately is detrimental for motor neuron survival. Addition of trophic factors, capable of supporting motor neuron survival in pure cultures, did not prevent motor neuron loss in cocultures with FABP7 overexpressing astrocytes. In addition, astrocyte cultures obtained from symptomatic hSOD1-expressing mice display upregulated FABP7 expression. Silencing endogenous FABP7 in these cultures decreases the expression of inflammatory markers and their toxicity toward cocultured motor neurons. Our results identify a key role of FABP7 in the regulation of the inflammatory response in astrocytes and identify FABP7 as a potential therapeutic target to prevent astrocyte-mediated motor neuron toxicity in ALS.

30 citations


Journal ArticleDOI
04 Feb 2020-Glia
TL;DR: It is shown that the knockdown of Fabp7 resulted in a reduction of OPC differentiation in vitro, and its function is not crucial for myelination and remyelination in vivo.
Abstract: The major constituents of the myelin sheath are lipids, which are made up of fatty acids (FAs). The hydrophilic environment inside the cells requires FAs to be bound to proteins, preventing their aggregation. Fatty acid binding proteins (FABPs) are one class of proteins known to bind FAs in a cell. Given the crucial role of FAs for myelin sheath formation we investigated the role of FABP7, the major isoform expressed in oligodendrocyte progenitor cells (OPCs), in developmental myelination and remyelination. Here, we show that the knockdown of Fabp7 resulted in a reduction of OPC differentiation in vitro. Consistent with this result, a delay in developmental myelination was observed in Fabp7 knockout animals. This delay was transient with full myelination being established before adulthood. FABP7 was dispensable for remyelination, as the knockout of Fapb7 did not alter remyelination efficiency in a focal demyelination model. In summary, while FABP7 is important in OPC differentiation in vitro, its function is not crucial for myelination and remyelination in vivo.

18 citations


Journal ArticleDOI
TL;DR: It is discovered that FABP7 interacts with ATP-citrate lyase (ACLY) and is important for acetyl-CoA metabolism in the nucleus and leads to epigenetic regulation of several genes, including caveolin-1.
Abstract: Fatty acid binding protein 7 (FABP7) is an intracellular fatty acid chaperon that is highly expressed in astrocytes, oligodendrocyte-precursor cells, and malignant glioma. Previously, we reported that FABP7 regulates the response to extracellular stimuli by controlling the expression of caveolin-1, an important component of lipid raft. Here, we explored the detailed mechanisms underlying FABP7 regulation of caveolin-1 expression using primary cultured FABP7-KO astrocytes as a model of loss of function and NIH-3T3 cells as a model of gain of function. We discovered that FABP7 interacts with ATP-citrate lyase (ACLY) and is important for acetyl-CoA metabolism in the nucleus. This interaction leads to epigenetic regulation of several genes, including caveolin-1. Our novel findings suggest that FABP7-ACLY modulation of nuclear acetyl-CoA has more influence on histone acetylation than cytoplasmic acetyl-CoA. The changes to histone structure may modify caveolae-related cell activity in astrocytes and tumors, including malignant glioma.

15 citations


Journal ArticleDOI
TL;DR: The results suggest that Fabp7 gene expression is regulated by circadian processes and may represent a molecular link controlling the circadian timing of sleep with sleep behavior.
Abstract: The astrocyte brain-type fatty acid binding protein (Fabp7) gene expression cycles globally throughout mammalian brain, and is known to regulate sleep in multiple species, including humans. The mechanisms that control circadian Fabp7 gene expression are not completely understood and may include core circadian clock components. Here we examined the circadian expression of Fabp7 mRNA in the hypothalamus of core clock gene Bmal1 knock-out (KO) mice. We observed that the circadian rhythm of Fabp7 mRNA expression is blunted, while overall Fabp7 mRNA levels are significantly higher in Bmal1 KO compared to control (C57BL/6 J) mice. We did not observe any significant changes in levels of hypothalamic mRNA expression of Fabp3 or Fabp5, two other fatty acid binding proteins expressed in mammalian brain, between Bmal1 KO and control mice. These results suggest that Fabp7 gene expression is regulated by circadian processes and may represent a molecular link controlling the circadian timing of sleep with sleep behavior.

12 citations


Journal ArticleDOI
TL;DR: It is demonstrated that breast cancer cells can undergo thermogenesis through UCP1 induction and disrupting FABP7-mediated fatty acid metabolism can unlock UCP 1-mediated thermogenesis, potentially making it possible to develop therapies to target thermogenesis.
Abstract: Humans produce heat through non-shivering thermogenesis, a metabolic process that occurs in inducible beige adipocytes expressing uncoupling protein 1 (UCP1). UCP1 dissipates the proton gradient of the mitochondrial inner membrane and converts that energy into heat. It is unclear whether cancer cells can exhibit autonomous thermogenesis. Previously, we found that the knockdown of hypoxia-inducible fatty acid binding protein 7 (FABP7) increased reactive oxygen species (ROS) in breast cancer cells. ROS are known to induce beige adipocyte differentiation. We investigated the association of tumor hypoxia, FABP7, and UCP1 across breast cancer patients using METABRIC and TCGA data sets. Furthermore, using a breast cancer cell line, HCC1806, we tested the effect of FABP7 knockdown on cellular physiology including thermogenesis. We found a strong mutual exclusivity of FABP7 and UCP1 expression both in METABRIC and in TCGA, indicating major metabolic phenotypic differences. FABP7 was preferentially distributed in poorly differentiated-, estrogen receptor (ER) negative tumors. In contrast, UCP1 was highly expressed in normal ducts and well-differentiated-, ER positive-, less hypoxic tumors. In the cell line-based experiments, UCP1 and its transcriptional regulators were upregulated upon FABP7 knockdown. UCP1 was induced in about 20% of cancer cells, and the effect was increased further in hypoxia. UCP1 depolarized mitochondrial membranes at the site of expression. UCP1 induction was associated with the increase in proton leak, glycolysis, and maximal respiration, mimicking the typical energy profile of beige adipocytes. Most importantly, UCP1 induction elevated cancer cell temperature associated with increased vulnerability to hypoxia and γ-irradiation. We demonstrated that breast cancer cells can undergo thermogenesis through UCP1 induction. Disrupting FABP7-mediated fatty acid metabolism can unlock UCP1-mediated thermogenesis, potentially making it possible to develop therapies to target thermogenesis. Further study would be warranted to investigate the effect of rise in temperature of cancer cells on patients’ outcomes and the relationship to other metabolic pathways.

10 citations


Journal ArticleDOI
TL;DR: It is suggested that linoleic acid could be a potential therapeutic strategy for FABP7-overexpressing TNBC patients, as demonstrated by a 3-fold increase in fatty acid oxidation.

9 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of dietary HUFA on the expression of five genes from Trachinotus ovatus, namely fabp4, fabp6a and fabp7a, was investigated.
Abstract: Fatty acid-binding protein (Fabp) is an important protein family involved in fatty acid uptake and deposition. Elucidating the function and regulation of fabps could contribute to the efficient production of biologically relevant fatty acids, such as highly unsaturated fatty acids (HUFAs), from fish. Herein, five genes from Trachinotus ovatus named fabp4, fabp6a, fabp6b, fabp7a, and fabp7b coding 133, 127, 118, 132, and 132 amino acid residues were cloned and sequenced. The effect of dietary HUFA on the expression of these genes was also investigated. Multiple protein sequence alignment showed that these Fabps shared high identity to their orthologs from other fish and mammals. Two conserved domains, lipocalin and lipocalin 7, were predicted in the deduced protein sequence of fabp4 and fabp7 paralogs, whereas fabp6 paralogs did not present the lipocalin domain. The adipose tissue, spleen, gill, and intestine showed the highest levels of fabp6b expression. In the brain, fabp6b was weakly expressed, whereas the expression of fabp7a was at its highest. Conversely, fabp7a showed a lower mRNA level than the other fabps in the liver and heart. In the dorsal muscle and kidney, fabp6a was the most abundantly expressed gene. Increasing dietary HUFA from 1.0% to 2.1% increased the gene expression of hepatic fabp4 and fabp6a gene expression but decreased gene expression in the dorsal muscle. Similarly, the expression of fabp7a in the dorsal muscle also declined in the 2.1% HUFA group. This study lays the groundwork for further studies focused on the physiological function and regulation of fish fabps.

9 citations


Journal ArticleDOI
05 Nov 2020-Cancers
TL;DR: This study provides the first transcriptome–proteome characterisation of meningioma, identifying several novel and previously described transcripts/proteins with potential grade III biomarker and therapeutic significance.
Abstract: Meningioma are the most frequent primary intracranial tumour. Management of aggressive meningioma is complex, and development of effective biomarkers or pharmacological interventions is hampered by an incomplete knowledge of molecular landscape. Here, we present an integrated analysis of two complementary omics studies to investigate alterations in the “transcriptome–proteome” profile of high-grade (III) compared to low-grade (I) meningiomas. We identified 3598 common transcripts/proteins and revealed concordant up- and downregulation in grade III vs. grade I meningiomas. Concordantly upregulated genes included FABP7, a fatty acid binding protein and the monoamine oxidase MAOB, the latter of which we validated at the protein level and established an association with Food and Drug Administration (FDA)-approved drugs. Notably, we derived a plasma signature of 21 discordantly expressed genes showing positive changes in protein but negative in transcript levels of high-grade meningiomas, including the validated genes CST3, LAMP2, PACS1 and HTRA1, suggesting the acquisition of these proteins by tumour from plasma. Aggressive meningiomas were enriched in processes such as oxidative phosphorylation and RNA metabolism, whilst concordantly downregulated genes were related to reduced cellular adhesion. Overall, our study provides the first transcriptome–proteome characterisation of meningioma, identifying several novel and previously described transcripts/proteins with potential grade III biomarker and therapeutic significance.

6 citations


Journal ArticleDOI
TL;DR: Findings imply that FABP7 expressed in neuronal stem/progenitor cells regulates the proliferation and maintenance of newborn cells.

5 citations


Posted ContentDOI
04 Nov 2020-bioRxiv
TL;DR: In this paper, a quantitative trait loci (QTL) for prepulse inhibition (PPI), an endophenotype of schizophrenia, was identified on mouse chromosome 10 and reported Fabp7 as a candidate gene from an analysis of F2 mice from inbred strains with high (C57BL/6N; B6) and low (C3H/HeN; C3H) PPI levels.
Abstract: We previously identified quantitative trait loci (QTL) for prepulse inhibition (PPI), an endophenotype of schizophrenia, on mouse chromosome 10 and reported Fabp7 as a candidate gene from an analysis of F2 mice from inbred strains with high (C57BL/6N; B6) and low (C3H/HeN; C3H) PPI levels. Here, we reanalyzed the previously reported QTLs with increased marker density. The highest LOD score (26.66) peaked at a synonymous coding and splice-site variant, c.753G>A (rs257098870), in the Cdh23 gene on chromosome 10; the c.753G (C3H) allele showed a PPI-lowering effect. Bayesian multiple QTL mapping also supported the same variant with a posterior probability of 1. Thus, we engineered the c.753G (C3H) allele into the B6 genetic background, which led to dampened PPI. We also revealed an e-QTL (expression-QTL) effect imparted by the c.753G>A variant for the Cdh23 expression in the brain. In a human study, a homologous variant (c.753G>A; rs769896655) in CDH23 showed a nominally significant enrichment in individuals with schizophrenia. We also identified multiple potentially deleterious CDH23 variants in individuals with schizophrenia. Collectively, the present study reveals a PPI-regulating Cdh23 variant and a possible contribution of CDH23 to schizophrenia susceptibility.

1 citations


Posted ContentDOI
04 Nov 2020-bioRxiv
TL;DR: In this paper, a quantitative trait loci (QTL) for prepulse inhibition (PPI), an endophenotype of schizophrenia, was identified on mouse chromosome 10 and reported Fabp7 as a candidate gene from an analysis of F2 mice from inbred strains with high (C57BL/6N; B6) and low (C3H/HeN; C3H) PPI levels.
Abstract: We previously identified quantitative trait loci (QTL) for prepulse inhibition (PPI), an endophenotype of schizophrenia, on mouse chromosome 10 and reported Fabp7 as a candidate gene from an analysis of F2 mice from inbred strains with high (C57BL/6N; B6) and low (C3H/HeN; C3H) PPI levels. Here, we reanalyzed the previously reported QTLs with increased marker density. The highest LOD score (26.66) peaked at a synonymous coding and splice-site variant, c.753G>A (rs257098870), in the Cdh23 gene on chromosome 10; the c.753G (C3H) allele showed a PPI-lowering effect. Bayesian multiple QTL mapping also supported the same variant with a posterior probability of 1. Thus, we engineered the c.753G (C3H) allele into the B6 genetic background, which led to dampened PPI. We also revealed an e-QTL (expression-QTL) effect imparted by the c.753G>A variant for the Cdh23 expression in the brain. In a human study, a homologous variant (c.753G>A; rs769896655) in CDH23 showed a nominally significant enrichment in individuals with schizophrenia. We also identified multiple potentially deleterious CDH23 variants in individuals with schizophrenia. Collectively, the present study reveals a PPI-regulating Cdh23 variant and a possible contribution of CDH23 to schizophrenia susceptibility.