scispace - formally typeset
Search or ask a question

Showing papers on "Fiber optic sensor published in 2014"


Journal ArticleDOI
TL;DR: This work presents an optical fiber supporting 36 information bearing orbital angular momentum states spanning 9 OAM orders, exploiting to their knowledge the highest number of OAM modes ever transmitted in optical fiber.
Abstract: We present an optical fiber supporting 36 information bearing orbital angular momentum (OAM) states spanning 9 OAM orders. We introduce design techniques to maximize the number of OAM modes supported in the fiber; while avoiding LP mode excitation. We fabricate such a fiber with an air core and an annular index profile using the MCVD process. We introduce a new technique for shaping OAM beams in free-space to obtain better coupling efficiency with fiber with annular index profiles. We excite 9 orders of OAM in the fiber, using interferometry to verify the OAM state on exiting the fiber. Using polarization multiplexing and both signs for the topological charge, we confirm support of 36 states, exploiting to our knowledge the highest number of OAM modes ever transmitted in optical fiber.

346 citations


Journal ArticleDOI
24 Apr 2014-Sensors
TL;DR: A wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications in a study on interferometric optical fiber sensors.
Abstract: Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have been developed such as Fabry-Perot, Michelson, Mach-Zehnder, Sagnac Fiber, and Common-path interferometers. Fabry-Perot interferometer (FPI) fiber-optic sensors have been extensively investigated for their exceedingly effective, simple fabrication as well as low cost aspects. In this study, a wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications. The chronology of the development of FPI sensors and their implementation in various applications are discussed.

291 citations


Journal ArticleDOI
TL;DR: This review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical Fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.
Abstract: In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.

209 citations


Journal ArticleDOI
25 Mar 2014-Sensors
TL;DR: Categorized by sensing structures, microfiber optical sensors for refractive index, concentration, temperature, humidity, strain and current measurement in gas or liquid environments are reviewed and an outlook for challenges and opportunities is concluded.
Abstract: With diameter close to or below the wavelength of guided light and high index contrast between the fiber core and the surrounding, an optical microfiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, evanescent fields and waveguide dispersion. Among various microfiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, fast response, high flexibility and low optical power consumption. Here we review recent progress in microfiber optical sensors regarding their fabrication, waveguide properties and sensing applications. Typical microfiber-based sensing structures, including biconical tapers, optical gratings, circular cavities, Mach-Zehnder interferometers and functionally coated/doped microfibers, are summarized. Categorized by sensing structures, microfiber optical sensors for refractive index, concentration, temperature, humidity, strain and current measurement in gas or liquid environments are reviewed. Finally, we conclude with an outlook for challenges and opportunities of microfiber optical sensors.

193 citations


Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate wavelength and mode-division multiplexed transmission over a fiber re-circulating loop comprising 50-km of low-DMGD few-mode fiber, and an optimized fewmode EDFA with reduced wavelength dependent gain and mode dependent gain.
Abstract: We demonstrate wavelength- and mode-division multiplexed transmission over a fiber re-circulating loop comprising 50-km of low-DMGD few-mode fiber, and an optimized few-mode EDFA with reduced wavelength-dependent gain and mode-dependent gain. We characterize the channel matrix in terms of its singular value spread, and investigate its long-term stability.

180 citations


Journal ArticleDOI
TL;DR: Experimental results indicate that the GMFBG-based NH3 gas sensor has fast response due to its highly compact structure and such a miniature fiber-optic element may find applications in high sensitivity gas sensing and trace analysis.
Abstract: A graphene coated microfiber Bragg grating (GMFBG) for gas sensing is reported in this Letter. Taking advantage of the surface field enhancement and gas absorption of a GMFBG, we demonstrate an ultrasensitive approach to detect the concentration of chemical gas. The obtained sensitivities are 0.2 and 0.5 ppm for NH3 and xylene gas, respectively, which are tens of times higher than that of a GMFBG without graphene for tiny gas concentration change detection. Experimental results indicate that the GMFBG-based NH3 gas sensor has fast response due to its highly compact structure. Such a miniature fiber-optic element may find applications in high sensitivity gas sensing and trace analysis.

176 citations


Journal ArticleDOI
TL;DR: A sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure sensing applications is demonstrated, with a high pressure sensitivity and low temperature cross-sensitivity, suitable for high sensitivity pressure sensing in harsh environments.
Abstract: We demonstrate a sub-micron silica diaphragm-based fiber-tip Fabry–Perot interferometer for pressure sensing applications. The thinnest silica diaphragm, with a thickness of ∼320 nm, has been achieved by use of an improved electrical arc discharge technique. Such a sub-micron silica diaphragm breaks the sensitivity limitation imposed by traditional all-silica Fabry–Perot interferometric pressure sensors and, as a result, a high pressure sensitivity of ∼1036 pm/MPa at 1550 nm and a low temperature cross-sensitivity of ∼960 Pa/°C are achieved when a silica diaphragm of ∼500 nm in thickness is used. Moreover, the all-silica spherical structure enhanced the mechanical strength of the micro-cavity sensor, making it suitable for high sensitivity pressure sensing in harsh environments.

173 citations


Journal ArticleDOI
TL;DR: A surface plasmon polaritons refractive index sensor which consists of two metal-insulator-metal waveguides coupled to each other by a ring resonator is proposed and the results indicate that there exist three resonance peaks in the transmission spectrum, and all of which have a linear relationship with theRefractive index of the material under sensing.
Abstract: A surface plasmon polaritons (SPPs) refractive index sensor which consists of two metal-insulator-metal (MIM) waveguides coupled to each other by a ring resonator is proposed. The transmission properties are numerically simulated by finite element method. The sensing characteristics of such structure are systematically analyzed by investigating the transmission spectrum. The results indicate that there exist three resonance peaks in the transmission spectrum, and all of which have a linear relationship with the refractive index of the material under sensing. Through the optimization of structural parameters, we achieve a theoretical value of the refractive index sensitivity as high as 3460nmRIU(-1). Furthermore, this structure can also be used as a temperature sensor with temperature sensitivity of 1.36nm/°C. This work paves the way toward sensitive nanometer scale refractive index sensor and temperature sensor for design and application.

166 citations


Journal ArticleDOI
Feng Xu1, Jinhui Shi1, Gong Kui1, Li Hefei1, Rongqing Hui2, Benli Yu1 
TL;DR: A fiber-optic acoustic pressure sensor based on a large-area nanolayer silver diaphragm is demonstrated with a high dynamic pressure sensitivity and simple fabrication process, making it an attractive tool for acoustic sensing and photo-acoustic spectroscopy.
Abstract: A fiber-optic acoustic pressure sensor based on a large-area nanolayer silver diaphragm is demonstrated with a high dynamic pressure sensitivity of 160 nm/Pa at 4 kHz frequency. The sensor exhibits a noise limited detectable pressure level of 14.5 μPa/Hz(1/2). Its high dynamic pressure sensitivity and simple fabrication process make it an attractive tool for acoustic sensing and photo-acoustic spectroscopy.

164 citations


Journal ArticleDOI
TL;DR: In this article, the photonic crystal fiber based surface plasmon resonance (PCF-SPR) chemical sensors were intensively reviewed, and the principles, superiorities and problems of the PCF-SRS sensors were also discussed in detail.
Abstract: Research developments of the photonic crystal fiber based surface plasmon resonance (PCF-SPR) chemical sensors were intensively reviewed Photonic crystal fibers, such as the microstructured optical fiber, the photonic bandgap fiber and the Bragg fiber with various structures were applied to the SPR sensors, including fuse-tapered fiber structure, D-type fiber structure and cladding-off fiber structure Those sensors were classified as three kinds of configurations which were respectively based on the inner metal layer, the metallic nanowire and the outer metal film What's more, the principles, superiorities and problems of the PCF-SPR sensors were also discussed in detail

164 citations


Journal ArticleDOI
TL;DR: A novel high temperature sensor based on customized multicore fiber (MCF) spliced between two standard single-mode fibers is proposed and experimentally demonstrated, enabling temperature measurements with high sensitivity and accuracy.
Abstract: A novel high temperature sensor based on customized multicore fiber (MCF) is proposed and experimentally demonstrated. The sensor consists of a short, few-centimeter-long segment of MCF spliced between two standard single-mode fibers. Due to interference effects, the transmission spectrum through this fiber chain features sharp and deep notches. Exposing the MCF segment to increasing temperatures of up to 1000°C results in a shift of the transmission notches toward longer wavelengths with a slope of approximately 29 pm/°C at lower temperatures and 52 pm/°C at higher temperatures, enabling temperature measurements with high sensitivity and accuracy. Due to its compact size and mechanical rigidity, the MCF sensor can be subjected to harsh environments. The fabrication of the MCF sensor is straightforward and reproducible, making it an inexpensive fiber device.

Journal ArticleDOI
TL;DR: The proposed fiber sensor has sensitivity of refractive index around 1500 nm/RIU and for protein concentration detection, its highest sensitivity is 2.42141 nm/%W/V.
Abstract: We demonstrate refractive index sensors based on single mode tapered fiber and its application as a biosensor. We utilize this tapered fiber optic biosensor, operating at 1550 nm, for the detection of protein (gelatin) concentration in water. The sensor is based on the spectroscopy of mode coupling based on core modes-fiber cladding modes excited by the fundamental core mode of an optical fiber when it transitions into tapered regions from untapered regions. The changes are determined from the wavelength shift of the transmission spectrum. The proposed fiber sensor has sensitivity of refractive index around 1500 nm/RIU and for protein concentration detection, its highest sensitivity is 2.42141 nm/%W/V.

Journal ArticleDOI
TL;DR: A highly sensitive fiber-optic sensor based on two cascaded intrinsic fiber Fabry-Perot interferometers (IFFPIs) is reported and it is found that the strain sensitivity of the proposed sensor can be improved from 1.6 pm/με for a single IFFPI sensor to 47.14 pm/ με by employing the Vernier effect.
Abstract: We report a highly sensitive fiber-optic sensor based on two cascaded intrinsic fiber Fabry-Perot interferometers (IFFPIs). The cascaded IFFPIs have different free spectral ranges (FSRs) and are formed by a short section of hollow core photonic crystal fiber sandwiched by two single mode fibers. With the superposition of reflective spectrum with different FSRs, the Vernier effect will be generated in the proposed sensor and we found that the strain sensitivity of the proposed sensor can be improved from 1.6 pm/μe for a single IFFPI sensor to 47.14 pm/μe by employing the Vernier effect. The sensor embed with a metglas ribbon can be also used to measure the magnetic field according to the similar principle. The sensitivity of the magnetic field measurement is achieved to be 71.57 pm/Oe that is significantly larger than the 2.5 pm/Oe for a single IFFPI sensor.

Journal ArticleDOI
TL;DR: In this article, a surface plasmon resonance (SPR) sensor based on a single mode optical fiber with six air holes is proposed, where a thin gold film and a TiO2 film are deposited on the walls of air holes.

Journal ArticleDOI
Jia Song1, Wenhai Li1, Ping Lu1, Yanping Xu1, Liang Chen1, Xiaoyi Bao1 
TL;DR: In this article, an optimized nonlinearity compensation algorithm is proposed to ensure a large wavelength tuning range to maintain the high measurement resolution and accuracy while increasing the sensing length, and the compensated OFDR trace exhibits improved sensing resolution at a short distance, and gradually deteriorates at the far end due to accumulated phase noise induced by fast tuning of the laser wavelength.
Abstract: A novel approach to realize long-range distributed temperature and strain measurement with high spatial resolution, as well as high temperature and strain resolution, is proposed based on optical frequency-domain reflectometry (OFDR). To maintain the high measurement resolution and accuracy while increasing the sensing length, an optimized nonlinearity compensation algorithm is implemented to ensure a large wavelength tuning range. The compensated OFDR trace exhibits improved sensing resolution at a short distance, and the spatial resolution gradually deteriorates at the far end due to accumulated phase noise induced by fast tuning of the laser wavelength. We demonstrated the spatial resolution of 0.3 mm over a single-mode fiber sensing length of over 300 m, and temperature and strain resolution of 0.7 $^{\circ}\hbox{C}$ and 2.3 $\mu\varepsilon$ with spatial resolution of up to 7 cm, respectively.

Journal ArticleDOI
TL;DR: A novel fiber in-line Mach-Zehnder interferometer with a large fringe visibility of up to 17 dB, which was fabricated by misaligned splicing a short section of thin core fiber between two sections of standard single-mode fiber could be used to realize simultaneous measurement of tensile strain and temperature.
Abstract: We demonstrated a novel fiber in-line Mach-Zehnder interferometer (MZI) with a large fringe visibility of up to 17 dB, which was fabricated by misaligned splicing a short section of thin core fiber between two sections of standard single-mode fiber. Such a MZI could be used to realize simultaneous measurement of tensile strain and temperature. Tensile strain was measured with an ultrahigh sensitivity of −0.023 dB/μɛ via the intensity modulation of interference fringes, and temperature was measured with a high sensitivity of 51 pm/°C via the wavelength modulation of interference fringe. That is, the MZI-based sensor overcomes the cross-sensitivity problem between tensile strain and temperature by means of different demodulation methods. Moreover, this proposed sensor exhibits the advantages of low-cost, extremely simple structure, compact size (only about 10 mm), and good repeatability.

Journal ArticleDOI
TL;DR: In this article, a novel chemical method based on silver mirror reaction is proposed to fabricate the optic fiber surface plasmon resonance sensing probe for liquid concentration measurement, which is more convenient, resources conservation and inexpensive.
Abstract: A novel chemical method based on silver mirror reaction is proposed to fabricate the optic fiber surface plasmon resonance sensing probe for liquid concentration measurement. Compared to traditional physical methods, this chemical method is more convenient, resources conservation and inexpensive. And it does not need any complicated equipment. A liquid concentration measurement system with end-reflection optic fiber SPR sensor was set up. Then the comparison experiment between darkroom environment and natural light environment was conducted. As a result, the effect from natural light was eliminated. Glycerol solutions with different volume concentrations (from 0% to 50%) were measured, and the shifts in resonance wavelength were obtained. The sensitivity of the sensor is found to range from 346.7 nm/% to 890.7 nm/%.

Journal ArticleDOI
20 Sep 2014
TL;DR: In this article, the authors showed that a multimode optical fiber can also function as a spectrometer by measuring the wavelength-dependent speckle pattern formed by interference between the guided modes.
Abstract: The development of optical fibers has revolutionized telecommunications by enabling long-distance broadband transmission with minimal loss. In turn, the ubiquity of high-quality, low-cost fibers has enabled a number of additional applications, including fiber sensors, fiber lasers, and imaging fiber bundles. Recently, we showed that a multimode optical fiber can also function as a spectrometer by measuring the wavelength-dependent speckle pattern formed by interference between the guided modes. Here, we reach a record resolution of 1 pm at a wavelength of 1500 nm using a 100 m long multimode fiber, outperforming the state-of-the-art grating spectrometers. We also achieved broadband operation with a 4 cm long fiber, covering 400–750 nm with 1 nm resolution. The fiber spectrometer, consisting of the fiber, which can be coiled to a small volume, and a monochrome camera that records the speckle pattern, is compact, lightweight, and low cost while providing ultrahigh resolution, broad bandwidth, and low loss.

Journal ArticleDOI
Huaping Gong1, Xiao Yang1, Kai Ni1, Chunliu Zhao1, Xinyong Dong1 
TL;DR: In this paper, a curvature sensor based on optical fiber modal interferometer is proposed, which consists of two peanut-shape structures that are formed only by single mode fibers.
Abstract: A novel curvature sensor based on optical fiber modal interferometer is demonstrated. It consists of two peanut-shape structures that are formed only by single mode fibers. The two peanut-shape structures can split and recombine the core and cladding modes, consequently, it produces modal interference. The experimental results show that the shift of the peak wavelength is almost linearly proportional to the change of curvature, and the sensitivities of the sensors with the lengths of 21, 26, and 30 mm are -18.46, -21.87, and 13.68 nm/m-1, respectively. The proposed curvature sensor is simple, high sensitive, and inexpensive.

Journal ArticleDOI
TL;DR: This paper presents a highly-sensitive, miniature, all-silica, dual parameter fiber-optic Fabry-Perot sensor, which is suitable for independent measurement of the refractive index and the temperature of the fluid surrounding the sensor.
Abstract: This paper presents a highly-sensitive, miniature, all-silica, dual parameter fiber-optic Fabry-Perot sensor, which is suitable for independent measurement of the refractive index and the temperature of the fluid surrounding the sensor. The experimental sensor was produced by a micromachining process based on the selective etching of doped silica glass and a simple assembly procedure that included fiber cleaving, splicing and etching of optical fibers. The presented sensor also allows for direct compensation of the temperature’s effect on the fluid’s refractive index change and consequently provides opportunities for the detection of very small changes in the surrounding fluid’s composition. A measurement resolution of 2x10−7RIU was demonstrated experimentally for a component of the refractive index that is related purely to the fluid’s composition. This resolution was achieved under non-stabilized temperature conditions. The temperature resolution of the sensor proved to be about 10−3°C. These high resolution measurements were obtained by phase-tracking of characteristic components in a Fourier transform of sensor’s optical spectrum.

Journal ArticleDOI
TL;DR: In this paper, the magneto-optical characteristic of the magnetic fluid was adopted to form a novel fiber-optic magnetic field sensor, which was composed of an extrinsic fiber Fabry-Perot interferometer and magnetic fluid.
Abstract: Magnetic fluid is a new type of optical functional material, which has interesting optical characteristics under an external magnetic field. In this letter, the magneto-optical characteristic of the magnetic fluid was adopted to form a novel fiber-optic magnetic field sensor. The sensor probe was composed of an extrinsic fiber Fabry-Perot interferometer and magnetic fluid. The refractive index of the magnetic fluid would be changed with the increase of magnetic field. Preliminary experiment was carried out to verify the feasibility of the sensor. The magnetic field measurement sensitivity was 0.0431 nm/Gs in the experiment. The measurement resolution was better than 0.5 Gs at the measurement range from 0 to 400 Gs. The sensor has the advantages of simple structure, compact size, and easy fabrication.

Journal ArticleDOI
Nannan Luan1, Ran Wang1, Wenhua Lv1, Ying Lu1, Jianquan Yao1 
29 Aug 2014-Sensors
TL;DR: Numerical results indicate that a temperature sensitivity as high as 4 nm/K can be achieved and that the most sensitive range of the sensor can be tuned by changing the volume ratios of ethanol and chloroform.
Abstract: We propose a temperature sensor design based on surface plasmon resonances (SPRs) supported by filling the holes of a six-hole photonic crystal fiber (PCF) with a silver nanowire. A liquid mixture (ethanol and chloroform) with a large thermo-optic coefficient is filled into the PCF holes as sensing medium. The filled silver nanowires can support resonance peaks and the peak will shift when temperature variations induce changes in the refractive indices of the mixture. By measuring the peak shift, the temperature change can be detected. The resonance peak is extremely sensitive to temperature because the refractive index of the filled mixture is close to that of the PCF material. Our numerical results indicate that a temperature sensitivity as high as 4 nm/K can be achieved and that the most sensitive range of the sensor can be tuned by changing the volume ratios of ethanol and chloroform. Moreover, the maximal sensitivity is relatively stable with random filled nanowires, which will be very convenient for the sensor fabrication.

Journal ArticleDOI
TL;DR: This work indicates that anisotropic expansion may exist in PMMA optical fiber, reducing the humidity responsivity of the grating and introducing uncertainty in the responsivity from fiber to fiber.
Abstract: The humidity response of poly(methyl methacrylate) (PMMA)-based optical fiber Bragg gratings (POFBGs) has been studied. The characteristic wavelength of the grating is modulated by water absorption-induced swelling and refractive index change in the fiber. This work indicates that anisotropic expansion may exist in PMMA optical fiber, reducing the humidity responsivity of the grating and introducing uncertainty in the responsivity from fiber to fiber. By pre-straining a grating, one can get rid of this uncertainty and simultaneously improve the POFBG response time.

Journal ArticleDOI
TL;DR: The finite element method (FEM) model was used to investigate the modal behavior in multicore Fiber and to predict the phase-matching curves of the long period grating inscribed into multicore fiber.
Abstract: Long period grating was UV inscribed into a multicore fiber consisting of 120 single mode cores. The multicore fiber that hosts the grating was fusion spliced into a single mode fiber at both ends. The splice creates a taper transition between the two types of fiber that produces a nonadiabatic mode evolution; this results in the illumination of all the modes in the multicore fiber. The spectral characteristics of this fiber device as a function of curvature were investigated. The device yielded a significant spectral sensitivity as high as 1.23 nm/m-1 and 3.57 dB/m-1 to the ultra-low curvature values from 0 to 1 m-1. This fiber device can also distinguish the orientation of curvature experienced by the fiber as the long period grating attenuation bands producing either a blue or red wavelength shift. The finite element method (FEM) model was used to investigate the modal behavior in multicore fiber and to predict the phase-matching curves of the long period grating inscribed into multicore fiber.

Journal ArticleDOI
TL;DR: In this paper, a distributed optical fiber sensor based on Brillouin optical time-domain analysis is considerably extended using seeded second-order Raman amplification and optical pulse coding, in which half of the fiber is used for sensing purposes, and the other half is used to carry the optical signals to the most distant sensing point.
Abstract: The real remoteness of a distributed optical fiber sensor based on Brillouin optical time-domain analysis is considerably extended in this paper using seeded second-order Raman amplification and optical pulse coding. The presented analysis and the experimental results demonstrate that a proper optimization of both methods combined with a well-equalized two-sideband probe wave provide a suitable solution to enhance the signal-to-noise ratio of the measurements when an ultra-long sensing fiber is used. In particular, the implemented system is based on an extended optical fiber length, in which half of the fiber is used for sensing purposes, and the other half is used to carry the optical signals to the most distant sensing point, providing also a long fiber for distributed Raman amplification. Power levels of all signals launched into the fiber are properly optimized in order to avoid nonlinear effects, pump depletion, and especially any power imbalance between the two sidebands of the probe wave. This last issue turns out to be extremely important in ultra-long Brillouin sensing to provide strong robustness of the system against pump depletion. This way, by employing a 240 km-long optical fiber-loop, sensing from the interrogation unit up to a 120 km remote position (i.e., corresponding to the real sensing distance away from the sensor unit) is experimentally demonstrated with a spatial resolution of 5 m. Furthermore, this implementation requires no powered element in the whole 240 km fiber loop, providing considerable advantages in situations where the sensing cable crosses large unmanned areas.

Journal ArticleDOI
TL;DR: A novel graphene-based fiber-optic relative humidity sensor relying on fundamentally different sensing mechanism that provides a beneficial complement to the existing electrical ones, and will promote the employment of graphene in chemical sensing techniques.
Abstract: Graphene-based electrical chemical vapor sensors can achieve extremely high sensitivity, whereas the comparatively slow sensing response and recovery, the research focused on only low concentration detection, have been known as drawbacks for many applications requiring rapid and high concentration detection. Here we report a novel graphene-based fiber-optic relative humidity (RH) sensor relying on fundamentally different sensing mechanism. The sensor can achieve power variation of up to 6.9 dB in high relative humidity range (70-95%), and display linear response with correlation coefficient of 98.2%, sensitivity of 0.31 dB/%RH, response speed of faster than 0.13%RH/s, and good repeatability in 75-95%RH. Theoretical analysis of sensing mechanism can explain the experimental result, and reveal the broad applying prospect of the sensor for other kinds of chemical vapor detection. This novel graphene-based optical sensor provides a beneficial complement to the existing electrical ones, and will promote the employment of graphene in chemical sensing techniques.

Journal ArticleDOI
09 Oct 2014-Sensors
TL;DR: An optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR) is implemented using a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end.
Abstract: This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR). We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

Journal ArticleDOI
TL;DR: In this article, a magnetic field sensor by combing magnetic fluid and optical fiber Loyt-Sagnac interferometer is proposed, which takes advantage of the birefringence effect of magnetic fluid.
Abstract: a b s t r a c t Magnetic field sensor by combing magnetic fluid and optical fiber Loyt-Sagnac interferometer is proposed. The sensor takes advantage of the birefringence effect of magnetic fluid. The relative small birefringence of the magnetic fluid is 'magnified' by the properly designed optical fiber Loyt-Sagnac interferometric structure. As compared to the reported MF-based sensors, the achieved sensitivity of the proposed sensor is 592.8 pm/Oe, which is enhanced by 1-3 orders of magnitude. © 2013 Published by Elsevier B.V.

Journal ArticleDOI
TL;DR: In this paper, a magnetic field sensor using a nonadiabatic tapered optical fiber (NATOF) interacting with magnetic fluid (MF) nanoparticles is proposed and experimentally demonstrated.
Abstract: A novel magnetic field sensor using a nonadiabatic tapered optical fiber (NATOF) interacting with magnetic fluid (MF) nanoparticles is proposed and experimentally demonstrated. The NATOF sensitivity when is subjected to refractive index (RI) measurement in the small range from 1.3380 to 1.3510 was 1260.17 nm/RIU as a refractometer sensor. The NATOF is surrounded by a MF whose RI changes with external magnetic field, which MF is as a cladding of tapered fiber. The output interference spectrum is shifted by the change of the applied magnetic field intensity in the range up to 44 mT with a sensitivity of -7.17 × 10 -2 nm/mT, used only 0.1% of the volume concentration of MF nanoparticles. This direct manipulation of light with magnetic fields provides an approach to develop future sensors relying on electromagnetic interactions.

Journal ArticleDOI
TL;DR: Three-dimensional patterning inside the optical fiber by femtosecond laser writing, together with selective chemical etching, is presented as a powerful tool to form refractive index structures such as optical waveguides and gratings as well as to open buried microfluidic channels and optical resonators inside the flexible and robust glass fiber.
Abstract: The lab-on-chip (LOC) platform has presented a powerful opportunity to improve functionalization, parallelization, and miniaturization on planar or multilevel geometries that has not been possible with fiber optic technology. A migration of such LOC devices into the optical fiber platform would therefore open the revolutionary prospect of creating novel lab-in-fiber (LIF) systems on the basis of an efficient optical transport highway for multifunctional sensing. For the LIF, the core optical waveguide inherently offers a facile means to interconnect numerous types of sensing elements along the optical fiber, presenting a radical opportunity for optimizing the packaging and densification of diverse components in convenient geometries beyond that available with conventional LOCs. In this paper, three-dimensional patterning inside the optical fiber by femtosecond laser writing, together with selective chemical etching, is presented as a powerful tool to form refractive index structures such as optical waveguides and gratings as well as to open buried microfluidic channels and optical resonators inside the flexible and robust glass fiber. In this approach, optically smooth surfaces (~12 nm rms) are introduced for the first time inside the fiber cladding that precisely conform to planar nanograting structures when formed by aberration-free focusing with an oil-immersion lens across the cylindrical fiber wall. This process has enabled optofluidic components to be precisely embedded within the fiber to be probed by either the single-mode fiber core waveguide or the laser-formed optical circuits. We establish cladding waveguides, X-couplers, fiber Bragg gratings, microholes, mirrors, optofluidic resonators, and microfluidic reservoirs that define the building blocks for facile interconnection of inline core-waveguide devices with cladding optofluidics. With these components, more advanced, integrated, and multiplexed fiber microsystems are presented demonstrating fluorescence detection, Fabry–Perot interferometric refractometry, and simultaneous sensing of refractive index, temperature, and bending strain. The flexible writing technique and multiplexed sensors described here open powerful prospects to migrate the benefits of LOCs into a more flexible and miniature LIF platform for highly functional and distributed sensing capabilities. The waveguide backbone of the LIF inherently provides an efficient exchange of information, combining sensing data that are attractive in telecom networks, smart catheters for medical procedures, compact sensors for security and defense, shape sensors, and low-cost health care products.