scispace - formally typeset
Search or ask a question

Showing papers on "Hepatocyte growth factor published in 2000"


Journal ArticleDOI
TL;DR: This analysis sets the stage for directing differentiation of human ES cells in culture and indicates that multiple human cell types may be enriched in vitro by specific factors.
Abstract: Human embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass of in vitro fertilized human blastocysts. We examined the potential of eight growth factors [basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), activin-A, bone morphogenic protein 4 (BMP-4), hepatocyte growth factor (HGF), epidermal growth factor (EGF), beta nerve growth factor (betaNGF), and retinoic acid] to direct the differentiation of human ES-derived cells in vitro. We show that human ES cells that have initiated development as aggregates (embryoid bodies) express a receptor for each of these factors, and that their effects are evident by differentiation into cells with different epithelial or mesenchymal morphologies. Differentiation of the cells was assayed by expression of 24 cell-specific molecular markers that cover all embryonic germ layers and 11 different tissues. Each growth factor has a unique effect that may result from directed differentiation and/or cell selection, and we can divide the overall effects of the factors into three categories: growth factors (Activin-A and TGFbeta1) that mainly induce mesodermal cells; factors (retinoic acid, EGF, BMP-4, and bFGF) that activate ectodermal and mesodermal markers; and factors (NGF and HGF) that allow differentiation into the three embryonic germ layers, including endoderm. None of the growth factors directs differentiation exclusively to one cell type. This analysis sets the stage for directing differentiation of human ES cells in culture and indicates that multiple human cell types may be enriched in vitro by specific factors.

1,334 citations


Journal ArticleDOI
TL;DR: This review will focus on tubulointerstitial fibrosis, the pathophysiology of which will be divided into four arbitrary phases, including the phase of renal destruction, the ultimate sequel to excessive matrix accumulation.
Abstract: All progressive renal diseases are the consequence of a process of destructive fibrosis This review will focus on tubulointerstitial fibrosis, the pathophysiology of which will be divided into four arbitrary phases First is the cellular activation and injury phase The tubules are activated, the peritubular capillary endothelium facilitates migration of mononuclear cells into the interstitium where they mature into macrophages, and myofibroblasts/activated fibroblasts begin to populate the interstitium Each of these cells releases soluble products that contribute to ongoing inflammation and ultimately fibrosis The second phase, the fibrogenic signaling phase, is characterized by the release of soluble factors that have fibrosis-promoting effects Several growth factors and cytokines have been implicated, with primary roles suggested for transforming growth factor-beta, connective tissue growth factor, angiotensin II and endothelin-1 Additional factors may participate including platelet-derived growth factor, basic fibroblast growth factor, tumor necrosis factor-alpha and interleukin-1, while interferon-gamma and hepatocyte growth factor may elicit antifibrotic responses Third is the fibrogenic phase when matrix proteins, both normal and novel to the renal interstitium, begin to accumulate During this time both increased matrix protein synthesis and impaired matrix turnover are evident The latter is due to the renal production of protease inhibitors such as the tissue inhibitors of metalloproteinases and plasminogen activator inhibitors which inactivate the renal proteases that normally regulate matrix turnover Fourth is the phase of renal destruction, the ultimate sequel to excessive matrix accumulation During this time the tubules and peritubular capillaries are obliterated The number of intact nephrons progressively declines resulting in a continuous reduction in glomerular filtration

613 citations


Journal ArticleDOI
TL;DR: It is demonstrated that MT-MMP–expressing cells can penetrate and remodel type I collagen-rich tissues by using membrane-anchored metalloproteinases as pericellular collagenases.
Abstract: During tissue-invasive events, migrating cells penetrate type I collagen-rich interstitial tissues by mobilizing undefined proteolytic enzymes. To screen for members of the matrix metalloproteinase (MMP) family that mediate collagen-invasive activity, an in vitro model system was developed wherein MDCK cells were stably transfected to overexpress each of ten different MMPs that have been linked to matrix remodeling states. MDCK cells were then stimulated with scatter factor/hepatocyte growth factor (SF/HGF) to initiate invasion and tubulogenesis atop either type I collagen or interstitial stroma to determine the ability of MMPs to accelerate, modify, or disrupt morphogenic responses. Neither secreted collagenases (MMP-1 and MMP-13), gelatinases (gelatinase A or B), stromelysins (MMP-3 and MMP-11), or matrilysin (MMP-7) affected SF/HGF-induced responses. By contrast, the membrane-anchored metalloproteinases, membrane-type 1 MMP, membrane-type 2 MMP, and membrane-type 3 MMP (MT1-, MT2-, and MT3-MMP) each modified the morphogenic program. Of the three MT-MMPs tested, only MT1-MMP and MT2-MMP were able to directly confer invasion-incompetent cells with the ability to penetrate type I collagen matrices. MT-MMP–dependent invasion proceeded independently of proMMP-2 activation, but required the enzymes to be membrane-anchored to the cell surface. These findings demonstrate that MT-MMP–expressing cells can penetrate and remodel type I collagen-rich tissues by using membrane-anchored metalloproteinases as pericellular collagenases.

600 citations


Journal Article
Napoleone Ferrara1
TL;DR: There is compelling evidence that VEGF plays an essential role in the development and differentiation of the cardiovascular system (Ferrara and Davis-Smyth, 1997).
Abstract: The development of a vascular supply is essential not only for organ development and differentiation during embryogenesis but also for wound healing and reproductive functions in the adult Folkman, 1995). Angiogenesis is also implicated in the pathogenesis of a variety of disorders: proliferative retinopathies, age-related macular degeneration, tumors, rheumatoid arthritis, and psoriasis (Folkman, 1995; Garner, 1994). Several potential regulators of angiogenesis have been identified, including fibroblast growth factor-a (aFGF), bFGF, transforming growth factor-alpha (TGF-alpha), TGF-beta, hepatocyte growth factor/scatter factor (HGF/SF), tumor necrosis factor-alpha (TNF-alpha), angiogenin, and interleukin-8 (IL-8) (Folkman and Shing, 1992; Risau, 1997). More recently, the angiopoietins, the ligands of the Tie-2 receptor (Suri et al., 1996; Maisonpierre et al., 1997), have been identified. Vascular endothelial growth factor (VEGF) is an endothelial-cell-specific mitogen. The finding that VEGF was potent and specific for vascular endothelial cells and, unlike bFGF, freely diffusible, led to the hypothesis that this molecule plays a unique role in the regulation of physiological and pathological angiogenesis (Ferrara and Henzel, 1989: Leung et al., 1989). Over the last few years, several additional members of the VEGF gene family have been identified, including placenta growth factor (PIGF) (Maglione et al., 1991,1993), VEGF-B (Olofsson et al., 1996), VEGF-C (Joukov et al., 1996; Lee et al., 1996), and VEGF-D (Orlandini et al., 1996. Achen et al., 1998). There is compelling evidence that VEGF plays an essential role in the development and differentiation of the cardiovascular system (Ferrara and Davis-Smyth, 1997).

522 citations


Journal ArticleDOI
TL;DR: A number of growth factors and cytokines function in the regulation of corneal cell proliferation and in the maintenance of Corneal transparency.

487 citations


Journal ArticleDOI
27 Oct 2000-Cell
TL;DR: Experiments with Met-positive and Met-deficient cell lines demonstrate that Met is required for InlB-dependent entry of L. monocytogenes, a novel Met agonist that induces bacterial entry through exploitation of a host RTK pathway.

479 citations


Journal ArticleDOI
TL;DR: Using a rat model of ischemia/reperfusion injury, it is demonstrated here that HGF is cardioprotective due to its antiapoptotic effect on cardiomyocytes, and supplements of HGF, an endogenous cardioprotsective factor, may be found clinically suitable in treating subjects with myocardial infarction.
Abstract: Using a rat model of ischemia/reperfusion injury, we demonstrate here that HGF is cardioprotective due to its antiapoptotic effect on cardiomyocytes. Following transient myocardial ischemia and reperfusion, c-Met/HGF receptor expression rapidly increased in the ischemic myocardium, an event accompanied by a dramatic increase in plasma HGF levels in the infarcted rats. When endogenous HGF was neutralized with a specific antibody, the number of myocyte cell deaths increased markedly, the infarct area expanded, and the mortality increased to 50%, as compared with a control group in which there was no mortality. Plasma from the myocardial infarcted rats had cardioprotective effects on primary cultured cardiomyocytes, but these effects were significantly diminished by neutralizing HGF. In contrast, recombinant HGF administration reduced the size of infarct area and improved cardiac function by suppressing apoptosis in cardiomyocytes. HGF rapidly augmented Bcl-xL expression in injured cardiomyocytes both in vitro and in vivo. As apoptosis of cardiomyocytes is one of the major contributors to the pathogenesis in subjects with ischemia/reperfusion injury, prevention of apoptosis may prove to be a reasonable therapeutic strategy. Supplements of HGF, an endogenous cardioprotective factor, may be found clinically suitable in treating subjects with myocardial infarction.

428 citations


Journal ArticleDOI
TL;DR: It is suggested that matriptase could act as an epithelial, upstream membrane activator to recruit and activate stromal-derived downstream effectors important for extracellular matrix degradation and epithelial migration, two major events of tissue remodeling, cancer invasion, and metastasis.

404 citations


Journal ArticleDOI
TL;DR: C-Met associates with EGFR in tumor cells, and this association facilitates the phosphorylation of c-Met in the absence of hepatocyte growth factor, which may have significant implications for altered growth control in tumorigenesis.

343 citations


Book ChapterDOI
TL;DR: This review focuses on the emerging understanding of the biochemical and biophysical foundations of growth factor-induced cell motility and tumor cell invasiveness, and the implications for development of targeted agents, with particular emphasis on signaling from the EGF and hepatocyte growth factor receptors.
Abstract: Cancer progression to the invasive and metastatic stage represents the most formidable barrier to successful treatment. To develop rational therapies, we must determine the molecular bases of these transitions. Cell motility is one of the defining characteristics of invasive tumors, enabling tumors to migrate into adjacent tissues or transmigrate limiting basement membranes and extracellular matrices. Invasive tumor cells have been demonstrated to present dysregulated cell motility in response to extracellular signals from growth factors and cytokines. Recent findings suggest that this growth factor receptor-mediated motility is one of the most common aberrations in tumor cells leading to invasiveness and represents a cellular behavior distinct from-adhesion-related haptokinetic and haptotactic migration. This review focuses on the emerging understanding of the biochemical and biophysical foundations of growth factor-induced cell motility and tumor cell invasiveness, and the implications for development of targeted agents, with particular emphasis on signaling from the epidermal growth factor (EGF) and hepatocyte growth factor (HGF) receptors, as these have most often been associated with tumor invasion. The nascent models highlight the roles of various intracellular signaling pathways including phospholipase C-gamma (PLC gamma), phosphatidylinositol (PI)3'-kinase, mitogen-activated protein (MAP) kinase, and actin cytoskeleton-related events. Development of novel agents against tumor invasion will require not only a detailed appreciation of the biochemical regulatory elements of motility but also a paradigm shift in our approach to and assessment of cancer therapy.

338 citations


Journal ArticleDOI
TL;DR: It is concluded that PAK and Rho-kinase play opposing roles in epithelial-mesenchymal transition induced by HGF, and provide new insight regarding the role of Cdc42 in these events.
Abstract: Hepatocyte growth factor (HGF), the ligand for the Met receptor tyrosine kinase, is a potent modulator of epithelial-mesenchymal transition and dispersal of epithelial cells, processes that play crucial roles in tumor development, invasion, and metastasis. Little is known about the Met-dependent proximal signals that regulate these events. We show that HGF stimulation of epithelial cells leads to activation of the Rho GTPases, Cdc42 and Rac, concomitant with the formation of filopodia and lamellipodia. Notably, HGF-dependent activation of Rac but not Cdc42 is dependent on phosphatidylinositol 3-kinase. Moreover, HGF-induced lamellipodia formation and cell spreading require phosphatidylinositol 3-kinase and are inhibited by dominant negative Cdc42 or Rac. HGF induces activation of the Cdc42/Rac-regulated p21-activated kinase (PAK) and c-Jun N-terminal kinase, and translocation of Rac, PAK, and Rho-dependent Rho-kinase to membrane ruffles. Use of dominant negative and activated mutants reveals an essential role for PAK but not Rho-kinase in HGF-induced epithelial cell spreading, whereas Rho-kinase activity is required for the formation of focal adhesions and stress fibers in response to HGF. We conclude that PAK and Rho-kinase play opposing roles in epithelial-mesenchymal transition induced by HGF, and provide new insight regarding the role of Cdc42 in these events.

Journal ArticleDOI
TL;DR: It is shown that HGF can act directly on primary muscle cells to block differentiation, and exogenous HGF synergizes with factors in damaged muscle to increase myoblast number and inhibits muscle differentiation both in vitro and in vivo.
Abstract: Hepatocyte growth factor (HGF) is the only known growth factor that activates quiescent satellite cells in skeletal muscle. We hypothesized that local delivery of HGF may enhance regeneration after trauma by increasing the number of myoblasts available for restoring normal tissue architecture. Injection of HGF into muscle at the time of injury increases myoblast number but does not enhance tissue repair as determined using quantitative histological analyses. Rather, depending on the dose and the timing of HGF administration relative to the injury, regeneration can be inhibited. The greatest inhibitory effect is observed when HGF is administered on the day of injury and continued for 3 days, corresponding to the time when satellite cell activation, proliferation, and early differentiation normally occur. To establish a mechanism for this inhibition, we show that HGF can act directly on primary muscle cells to block differentiation. These results demonstrate that 1) exogenous HGF synergizes with factors in damaged muscle to increase myoblast number, 2) regeneration is not regulated solely by myoblast number, and 3) HGF inhibits muscle differentiation both in vitro and in vivo.

Journal ArticleDOI
TL;DR: A structure-function approach is undertook and it is demonstrated that association of Gab1 with the tyrosine phosphatase SHP-2 is required for sustained Erk activation and for epithelial morphogenesis downstream from the Met receptor.
Abstract: Epithelial morphogenesis is critical during development and wound healing, and alterations in this program contribute to neoplasia. Met, the hepatocyte growth factor (HGF) receptor, promotes a morphogenic program in epithelial cell lines in matrix cultures. Previous studies have identified Gab1, the major phosphorylated protein following Met activation, as important for the morphogenic response. Gab1 is a docking protein that couples the Met receptor with multiple signaling proteins, including phosphatidylinositol-3 kinase, phospholipase Cγ, the adapter protein Crk, and the tyrosine specific phosphatase SHP-2. HGF induces sustained phosphorylation of Gab1 and sustained activation of extracellular signal-regulated kinase (Erk) in epithelial Madin-Darby canine kidney cells. In contrast, epidermal growth factor fails to promote a morphogenic program and induces transient Gab1 phosphorylation and Erk activation. To elucidate the Gab1-dependent signals required for epithelial morphogenesis, we undertook a structure-function approach and demonstrate that association of Gab1 with the tyrosine phosphatase SHP-2 is required for sustained Erk activation and for epithelial morphogenesis downstream from the Met receptor. Epithelial cells expressing a Gab1 mutant protein unable to recruit SHP-2 elicit a transient activation of Erk in response to HGF. Moreover, SHP-2 catalytic activity is required, since the expression of a catalytically inactive SHP-2 mutant, C/S, abrogates sustained activation of Erk and epithelial morphogenesis by the Met receptor. These data identify SHP-2 as a positive modulator of Erk activity and epithelial morphogenesis downstream from the Met receptor.

Journal ArticleDOI
TL;DR: It is suggested that anti–TGF‐β intervention should be therapeutic in already‐established fibrotic livers, not only by suppressing fibrosis, but by facilitating hepatocyte regeneration.

Journal ArticleDOI
TL;DR: It is concluded that the overexpression of HGF in the islet increases beta cell proliferation, islet number, beta cell mass, and total insulin production in vivo, which results in mild hypoglycemia and resistance to the diabetogenic effects of streptozotocin.

Journal ArticleDOI
TL;DR: Direct in vivo evidence is provided for the induction of angiogenesis by transfection of the human hgf gene in rat non-infarcted and infarCTed myocardium.
Abstract: The feasibility of a novel therapeutic strategy using angiogenic growth factors to expedite and/or augment collateral artery development has recently entered the realm of treatment of ischemic diseases. Hepatocyte growth factor (HGF) is a novel member of endothelium-specific growth factors whose mitogenic activity on endothelial cells is very potent. Although it has been demonstrated that HGF is a potential angiogenic growth factor in in vitro culture systems, there is no direct in vivo evidence for the angiogenic activity of HGF in physiological conditions. In this study, we hypothesized that transfection of HGF gene into infarcted myocardium could induce angiogenesis, potentially resulting in a beneficial response to hypoxia. Human HGF gene or control vector driven by the SRalpha promoter was transfected into rat myocardium by the HVJ-liposome method. Four days after in vivo transfection of human HGF gene, there was a marked increase in human immunoreactive HGF as compared with control vector (P < 0.01). In myocardium transfected with HGF vector, a significant increase in PCNA-positive endothelial cells was observed, while few PCNA-positive endothelial cells were detected in both control-vector-transfected and untreated myocardium. The number of vessels around the HGF injection sites was significantly increased as compared with control vector or vehicle (P < 0.01). Angiogenic activity induced by the transfection of HGF vector was also confirmed by the activation of a transcription factor, ets, which is essential for angiogenesis. Furthermore, we studied the pathophysiological role of HGF in a myocardial infarction model. The concentration of endogenous HGF was significantly decreased in infarcted myocardium. Therefore, we hypothesized that transfection of HGF gene into infarcted myocardium could induce a beneficial response to the decreased endogenous HGF. Indeed, transfection of human HGF into infarcted myocardium also resulted in a significant increase in the number of vessels (P < 0. 01), accompanied by marked induction of ets binding activity and a significant increase in blood flow. Overall, the present results provide direct in vivo evidence for the induction of angiogenesis by transfection of the human HGF gene in rat non-infarcted and infarcted myocardium. The constant production of local HGF resulting from the transgene may be considered as an innovative therapeutic angiogenesis strategy for ischemic diseases such as myocardial infarction. Gene Therapy (2000) 7, 417-427.

Journal Article
TL;DR: The first evidence is provided that NK4 inhibits tumor growth and metastasis as an angiogenesis inhibitor as well as an HGF antagonist, and that the antiangiogenic action of NK4 is independent of its activity as HGF antagonists.
Abstract: We reported that NK4, composed of the N-terminal hairpin and subsequent four kringle domains of hepatocyte growth factor (HGF), acts as the competitive antagonist for HGF. We now provide the first evidence that NK4 inhibits tumor growth and metastasis as an angiogenesis inhibitor as well as an HGF antagonist. Administration of NK4 suppressed primary tumor growth and lung metastasis of Lewis lung carcinoma and Jyg-MC(A) mammary carcinoma s.c. implanted into mice, although neither HGF nor NK4 affected proliferation and survival of these tumor cells in vitro. NK4 treatment resulted in a remarkable decrease in microvessel density and an increase of apoptotic tumor cells in primary tumors, which suggests that the inhibition of primary tumor growth by NK4 may be achieved by suppression of tumor angiogenesis. In vivo, NK4 inhibited angiogenesis in chick chorioallantoic membranes and in rabbit corneal neovascularization induced by basic fibroblast growth factor (bFGF). In vitro, NK4 inhibited growth and migration of human microvascular endothelial cells induced by bFGF and vascular endothelial growth factor (VEGF) as well as by HGF. HGF and VEGF activated the Met/HGF receptor and the KDR/VEGF receptor, respectively, whereas NK4 inhibited HGF-induced Met tyrosine phosphorylation but not VEGF-induced KDR phosphorylation. NK4 inhibited HGF-induced ERK1/2 (p44/42 mitogen-activated protein kinase) activation, but allowed for bFGF- and VEGF-induced ERK1/2 activation. These results indicate that NK4 is an angiogenesis inhibitor as well as an HGF antagonist, and that the antiangiogenic action of NK4 is independent of its activity as HGF antagonist. The bifunctional properties of NK4 to act as an angiogenesis inhibitor and as an HGF antagonist raises the possibility that NK4 may prove therapeutic for cancer patients.

Journal ArticleDOI
TL;DR: Concentrations of angiogenic factors parallel the activity of disease and are independent of the hypoxic stimulus, which might indicate that the bone marrow environment is their major source.
Abstract: BACKGROUND AND OBJECTIVES: To study the role of some soluble factors in the process of angiogenesis that accompanies multiple myeloma (MM). DESIGN AND METHODS: The concentrations of three well-known angiogenic peptides, vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and hepatocyte growth factor (HGF) were evaluated by an ELISA method. All of these factors were measured in the plasma obtained from peripheral blood (PB) and bone marrow (BM) aspirates of 34 patients affected by plasma cell disorders. This series included one patient with a solitary extramedullary plasmacytoma, 17 patients with MM at diagnosis, and 16 with previously treated MM. RESULTS: In all the patients, the concentration of each angiogenic factor was higher in bone marrow than in peripheral blood. Mean values of the three angiogenic factors in BM or in PB were lower in stage I than stage II-III. One patient with extramedullary solitary myeloma had high levels of VEGF and bFGF but this increase was not found in the other 6 patients with extramedullary disease when compared with patients without extramedullary disease. VEGF and bFGF did not correlate with each other while HGF showed a weak correlation with VEGF and a stronger one with bFGF. Moreover, VEGF correlated with features of disease activity, such as C-reactive protein, and 2-microglobulin, while both bFGF and HGF showed an inverse correlation with albumin level. No correlation was found between VEGF, bFGF and HGF levels and age, M protein level, osteolytic lesions, or percentage of BM plasma cells. Since angiogenic factors may be released by normal cells in response to hypoxia, we also evaluated erythropoietin (EPO) levels (which correlate with the hypoxic stimulus) both in PB and BM plasma of these patients but none of the measured angiogenic factors correlated with EPO levels. Interpretation and Conclusions. Several soluble factors may play a role in the angiogenic activity described in MM but their contribution to the progression of disease may be different. The finding of higher levels of these factors in BM than in PB might indicate that the bone marrow environment is their major source. Concentrations of angiogenic factors parallel the activity of disease and are independent of the hypoxic stimulus.

Journal ArticleDOI
TL;DR: It is demonstrated that bone marrow cells originally include AFP-expressing hepatic progenitor cells that can be differentiated into hepatocytes by HGF in culture, indicating that such cultures are useful resources for cell transplantation therapy for liver diseases.

Journal ArticleDOI
TL;DR: The studies suggest that the myofibers serve as the main source for the muscle FGF6 in vivo, and enhance satellite cell proliferation to a similar degree as that seen with FGF2, whereas FGF5 and FGF7 are ineffective.
Abstract: Satellite cells are the myogenic precursors in postnatal muscle and are situated beneath the myofiber basement membrane. We previously showed that fibroblast growth factor 2 (FGF2, basic FGF) stimulates a greater number of satellite cells to enter the cell cycle but does not modify the overall schedule of a short proliferative phase and a rapid transition to the differentiated state as the satellite cells undergo myogenesis in isolated myofibers. In this study we investigated whether other members of the FGF family can maintain the proliferative state of the satellite cells in rat myofiber cultures. We show that FGF1, FGF4, and FGF6 (as well as hepatocyte growth factor, HGF) enhance satellite cell proliferation to a similar degree as that seen with FGF2, whereas FGF5 and FGF7 are ineffective. None of the growth factors prolongs the proliferative phase or delays the transition of the satellite cells to the differentiating, myogenin(+) state. However, FGF6 retards the rapid exit of the cells from the myogenin(+) state that routinely occurs in myofiber cultures. To determine which of the above growth factors might be involved in regulating satellite cells in vivo, we examined their mRNA expression patterns in cultured rat myofibers using RT-PCR. The expression of all growth factors, excluding FGF4, was confirmed. Only FGF6 was expressed at a higher level in the isolated myofibers and not in the connective tissue cells surrounding the myofibers or in satellite cells dissociated away from the muscle. By Western blot analysis, we also demonstrated the presence of FGF6 protein in the skeletal musle tissue. Our studies therefore suggest that the myofibers serve as the main source for the muscle FGF6 in vivo. We also used RT-PCR to analyze the expression patterns of the four tyrosine kinase FGF receptors (FGFR1-FGFR4) and of the HGF receptor (c-met) in the myofiber cultures. Depending on the time in culture, expression of all receptors was detected, with FGFR2 and FGFR3 expressed only at a low level. Only FGFR4 was expressed at a higher level in the myofibers but not the connective tissue cell cultures. FGFR4 was also expressed at a higher level in satellite cells compared to the nonmyogenic cells when the two cell populations were released from the muscle tissue and fractionated by Percoll density centrifugation. The unique localization patterns of FGF6 and FGFR4 may reflect specific roles for these members of the FGF signaling complex during myogenesis in adult skeletal muscle.

Journal ArticleDOI
TL;DR: It is shown that HGF is expressed by cultured satellite cells and that endogenous HGF from satellite cells can act in an autocrine fashion, and direct administration of HGF into damaged muscle may represent a potentially useful approach for stimulating muscle repair.
Abstract: Muscle satellite cell activation following injury is essential for muscle repair, and hepatocyte growth factor/scatter factor (HGF) was the first growth factor shown to be able to stimulate activation and early division of adult satellite cells in culture and in muscle tissue In addition, HGF was shown to be present in uninjured and injured skeletal muscle Experiments in this report demonstrate that cultured satellite cells also synthesize and secrete HGF Reverse transcription-polymerase chain reaction (RT-PCR) was used to demonstrate the presence of HGF mRNA in cultured adult satellite cells as early as 12 h from the time of plating Message content was detectable at early times in culture and appeared to increase between 36 and 48 h HGF protein expression was demonstrated during this time period by immunofluorescence localization; HGF was localized to mononucleated cells and multinucleated myotubes HGF message was not detectable in muscle-derived fibroblast clones, and fibroblast-like cells in satellite cell cultures were negative for HGF by immunofluorescence analysis Furthermore, Western blot analysis revealed the presence of HGF in satellite cell culture conditioned medium, associated with the cell surface and inside cells Finally, the addition of neutralizing HGF antibodies during the proliferation phase in culture (42-90 h) significantly reduced cell proliferation These experiments indicate that HGF is expressed by cultured satellite cells and that endogenous HGF from satellite cells can act in an autocrine fashion Because HGF plays a central role in satellite cell activation, it is likely that direct administration of HGF into damaged muscle may represent a potentially useful approach for stimulating muscle repair This approach may also be useful in enhancing the efficiency of myoblast transplantation in vivo

Journal ArticleDOI
TL;DR: It is demonstrated that Ang II blockade prevented myocardial fibrosis in the cardiomyopathic hamster, accompanied by a significant increase in cardiac HGF, suggesting increase in local HGF expression may participate in the prevention of myocardIAL injury by Ang IIblockade through its antifibrotic action.
Abstract: Background—Because hepatocyte growth factor (HGF) prevented and/or regressed fibrosis in liver and pulmonary injury models, HGF may play an important role in the pathogenesis of fibrotic cardiovascular disease. Because angiotensin (Ang) II significantly decreased local HGF production, we performed (1) in vitro experiments using fibroblasts and (2) administration of an ACE inhibitor (temocapril) and an Ang II type 1 receptor antagonist (CS-866) to cardiomyopathic hamsters. Methods and Results—In human fibroblasts, HGF significantly increased the production of matrix metalloprotease-1 (MMP-1) and urokinase plasminogen activator, whereas HGF also significantly attenuated the reduction of MMP-1 activity induced by Ang II. In contrast, HGF significantly decreased transforming growth factor (TGF)-β mRNA stimulated by Ang II, whereas HGF also decreased basal TGF-β protein level without affecting growth. Similarly, in rat cardiac fibroblasts, HGF inhibited the expression and production of TGF-β, whereas HGF upreg...

Journal Article
TL;DR: It is discovered that certain members of the geldanamycin family of anisamycin antibiotics are potent inhibitors of HGF/SF-mediated plasmin activation, displaying inhibitory properties at femtomolar concentrations and nine orders of magnitude below their growth inhibitory concentrations.
Abstract: The Met receptor tyrosine kinase and its ligand, hepatocyte growth factor/scatter factor (HGF/SF), have been implicated in human tumor development and metastasis. HGF/SF induces the expression of urokinase plasminogen activator (uPA) and the uPA receptor (uPAR), important mediators of cell invasion and metastasis. We have developed a cell-based assay to screen for inhibitors of this signaling system using the induction of endogenous uPA and uPAR and the subsequent conversion of plasminogen to plasmin as the biological end point. Assay validation was established using a neutralizing antiserum to HGF/SF and a uPA inhibitor (B428), as well as inhibitors of the MKK-MAPK1/2 pathway, shown previously to be important in the induction of uPA and uPAR. Using this assay, we found several classes of molecules that exhibited inhibition of HGF/SF-dependent plasmin activation. However, we discovered that certain members of the geldanamycin family of anisamycin antibiotics are potent inhibitors of HGF/SF-mediated plasmin activation, displaying inhibitory properties at femtomolar concentrations and nine orders of magnitude below their growth inhibitory concentrations. At nanomolar concentrations, the geldanamycins down-regulate Met protein expression, inhibit HGF/SF-mediated cell motility and invasion, and also revert the phenotype of both autocrine HGF/SF-Met transformed cells as well as those transformed by Met proteins with activating mutations. Thus, the geldanamycins may have important therapeutic potential for the treatment of cancers in which Met activity contributes to the invasive/metastatic phenotype.

Journal Article
TL;DR: It is demonstrated that c-met receptor activation by SF/HGF protects certain glioblastoma cells from DNA-damaging agents by activating phosphoinositol 3-kinase-dependent and Akt-dependent antiapoptotic pathways.
Abstract: We have shown recently that the multifunctional growth factor, scatter factor/hepatocyte growth factor (SF/HGF), and its receptor c-met enhance the malignancy of human glioblastoma through an autocrine stimulatory loop (R. Abounader et al., J. Natl. Cancer Inst., 91: 1548-1556, 1999). This report examines the effects of SF/HGF:c-met signaling on human glioma cell responses to DNA-damaging agents. Pretreating U373 human glioblastoma cells with recombinant SF/HGF partially abrogated their cytotoxic responses to gamma irradiation, cisplatin, camptothecin, Adriamycin, and Taxol in vitro. This cytoprotective effect of SF/HGF occurred at least in part through an inhibition of apoptosis, as evidenced by diminished terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling index and reduced DNA laddering. Anti-c-met U1/ribozyme gene transfer inhibited the ability of SF/HGF to protect against single-strand DNA breakage, DNA fragmentation, and glioblastoma cell death caused by DNA-damaging agents, demonstrating a requirement for c-met receptor function. Phosphorylation of the cell survival-promoting kinase Akt (protein kinase B) resulted from SF/HGF treatment of U373 cells, and both Akt phosphorylation and cell survival induced by SF/HGF were inhibited by phosphatidylinositol 3-kinase inhibitors but not by inhibitors of mitogen-activated protein kinase kinase or protein kinase C. Cytoprotection by SF/HGF in vitro was also inhibited by transient expression of dominant-negative Akt. Transgenic SF/HGF expression by intracranial 9L gliosarcomas reduced tumor cell sensitivity to gamma irradiation, confirming the cytoprotective effect of SF/HGF in vivo. These findings demonstrate that c-met receptor activation by SF/HGF protects certain glioblastoma cells from DNA-damaging agents by activating phosphoinositol 3-kinase-dependent and Akt-dependent antiapoptotic pathways.

Journal ArticleDOI
16 Mar 2000-Oncogene
TL;DR: Sustained recruitment of PLCγ to Gab1 plays an important role in branching tubulogenesis and is concluded that sustained recruitment of HGF receptor directly activates PI3 kinase, Ras and STAT signalling pathways and phosphorylates the adaptator GRB2 Associated Binder-1.
Abstract: A distinctive property of Hepatocyte Growth Factor (HGF) is its ability to induce differentiation of tubular structures from epithelial and endothelial cells (branching tubulogenesis). The HGF receptor directly activates PI3 kinase, Ras and STAT signalling pathways and phosphorylates the adaptator GRB2 Associated Binder-1 (Gab1). Gab1 is also phosphorylated in response to Epidermal Growth Factor (EGF) but is unable to induce tubule formation. Comparison of 32P-peptide maps of Gab1 from EGF- versus HGF-treated cells, demonstrates that the same sites are phosphorylated in vivo. However, while both EGF and HGF induce rapid tyrosine phosphorylation of Gab1 with a peak at 15 min, the phosphorylation persists for over 1 h, only in response to HGF. Nine tyrosines are phosphorylated by both receptors. Three of them (Y307, Y373, Y407) bind phospholipase C-gamma (PLC-gamma). Interestingly, the overexpression of a Gab1 mutant unable to bind PLC-gamma (Gab1 Y307/373/407F) did not alter HGF-stimulated cell scattering, only partially reduced the growth stimulation but completely abolished HGF-mediated tubulogenesis. It is concluded that sustained recruitment of PLCgamma to Gab1 plays an important role in branching tubulogenesis.

Journal ArticleDOI
TL;DR: This work has shown that a major subclass of hypaxial muscle groups is derived from long-range migrating progenitor cells that delaminate from the dermomyotome, which requires a precise control of proliferation and differentiation of myogenic precursor cells.

Journal ArticleDOI
01 Feb 2000-Liver
TL;DR: It is concluded that KCs are important for hepatocyte regeneration after PH, and delayed liver regeneration in KC-depleted rats can be explained by an imbalanced hepatic cytokine expression, thereby suppressing important growth-stimulating cytokines.
Abstract: Background Although Kupffer cells (KCs) are capable of producing important growth-stimulating cytokines, their role in liver regeneration following partial hepatectomy (PH) remains poorly understood. Methods In the present study liver regeneration was studied after KC-depletion by intravenous administration of liposome-encapsulated dichloromethylene-diphosphonate (C12MDP), a method known to physically eliminate KCs. Furthermore, splenectomy was performed one week prior to PH to exclude the effect of C12MDP-liposomes on macrophage populations in the spleen. Results KC-depletion was confirmed in cryostat liver sections stained with the monoclonal antibody ED2, a marker for resident tissue macrophages. Forty-eight hours after PH, the cumulative hepatocyte DNA synthesis, as determined in liver sections by the hepatocyte bromodeoxyuridine labeling index, was significantly decreased in KC-depleted rats when compared to control-rats. The weight of the remnant liver, expressed as a percentage of the initial liver weight, was significantly less at 96 h after PH in KC-depleted rats. KC-depletion abolished the hepatic interleukin-6 (IL-6) and interleukin-10 (IL-10) mRNA synthesis and decreased hepatic expression of tumor necrosis factor-alpha (TNF-alpha), hepatocyte growth factor (HGF) and transforming growth factor-beta1(TGF-beta1) mRNA after PH, as was assessed by reverse-transcriptase polymerase chain reaction (RT-PCR). Moreover, at 4 h after PH the systemic release of IL-6 was significantly decreased in KC-depleted rats. Conclusion We conclude that KCs are important for hepatocyte regeneration after PH. Delayed liver regeneration in KC-depleted rats can be explained, at least in part, by an imbalanced hepatic cytokine expression, thereby suppressing important growth-stimulating cytokines.

Journal ArticleDOI
27 Apr 2000-Oncogene
TL;DR: Findings suggest that HGF/SF activates a cell survival and DNA repair pathway that involves signaling through PI3K and c-Akt and stabilization of the expression of Bcl-XL; and they implicate B cl-XL in the DNA repair process.
Abstract: Scatter factor (SF) [aka. hepatocyte growth factor (HGF)] (designated HGF/SF) is a multifunctional cytokine that stimulates tumor cell invasion and angiogenesis. We recently reported that HGF/SF protects epithelial and carcinoma cells against cytotoxicity from DNA-damaging agents and that HGF/SF-mediated cytoprotection was associated with up-regulation of the anti-apoptotic protein Bcl-XL in cells exposed to adriamycin. We now report that in addition to blocking apoptosis, HGF/SF markedly enhances the repair of DNA strand breaks caused by adriamycin or gamma radiation. Constitutive expression of Bcl-XL in MDA-MB-453 breast cancer cells not only simulated the HGF/SF-mediated chemoradioresistance, but also enhanced the repair of DNA strand breaks. The ability of HGF/SF to induce both chemoresistance and DNA repair was inhibited by wortmannin, suggesting that these activities of HGF/SF are due, in part, to a phosphatidylinositol-3'-kinase (PI3K) dependent signaling pathway. Consistent with this finding, HGF/SF induced the phosphorylation of c-Akt (protein kinase-B), a PI3K substrate implicated in apoptosis inhibition; and an expression vector encoding a dominant negative kinase inactive Akt partially but significantly inhibited HGF/SF-mediated cell protection and DNA repair. These findings suggest that HGF/SF activates a cell survival and DNA repair pathway that involves signaling through PI3K and c-Akt and stabilization of the expression of Bcl-XL; and they implicate Bcl-XL in the DNA repair process.

Journal ArticleDOI
TL;DR: Meningiomas do not show an angiogenic switch involving VEGF and/or hepatocyte growth factor/scatter factor, as has previously been found in gliomas, and the biological activity of V EGF and basic fibroblast growth factor in meningiomas suggests that both are potential targets for antiangiogenic therapy.
Abstract: OBJECTIVE: Angiogenesis is mediated by a number of different growth factors and appears vital for tumor growth. The understanding of angiogenic mechanisms could offer new therapeutic perspectives; in this context, the role of four potentially angiogenic growth factors was analyzed in a large series of meningiomas of different grades. METHODS: Vascular endothelial growth factor (VEGF), placenta growth factor, hepatocyte growth factor/scatter factor, and basic fibroblast growth factor were quantified in 69 tumors by enzyme-linked immunosorbent assay. Microvessel density and proliferative activity were determined on paraffin sections, and clinical tumor invasiveness was rated. Induction of endothelial chemotaxis and capillary-like tube formation were studied in vitro using modified Boyden chamber assays and three-dimensional collagen gel assays, respectively. RESULTS: Tumors included 40 benign (World Health Organization [WHO] Grade I), 21 atypical (WHO Grade II), and 8 anaplastic/malignant (WHO Grade III) meningiomas. We found a correlation between meningioma grade and VEGF content (r = 0.37, P = 0.002), which was 2-fold higher in atypical than in benign meningiomas (P = 0.022) and 10-fold higher in malignant than in benign meningiomas (P = 0.025). Among different subtypes of Grade I meningiomas, VEGF levels were 10-fold higher in meningothelial than in fibrous meningiomas (P = 0.015). None of the other three factors investigated showed any association with tumor grade, microvessel density, or invasiveness, and VEGF also did not correlate with vascularity or invasiveness. Moreover, vascularity did not increase with malignancy grade. Endothelial chemotaxis and capillary-like tube formation in vitro were induced by meningioma extracts and were most effectively blocked by co-addition of antibodies against basic fibroblast growth factor, followed by anti-VEGF, whereas anti-hepatocyte growth factor/scatter factor was not effective. The chemotactic activity of meningioma extracts on endothelial cells correlated with their VEGF content (r = 0.6, P = 0.003). CONCLUSION: Meningiomas do not show an angiogenic switch involving VEGF and/or hepatocyte growth factor/ scatter factor, as has previously been found in gliomas. Nevertheless, the biological activity of VEGF and basic fibroblast growth factor in meningiomas suggests that both are potential targets for antiangiogenic therapy in meningiomas of all WHO grades.

Journal ArticleDOI
TL;DR: It is found that, in epithelial Madin-Darby canine kidney cells (MDCK), endogenous PAR-6 was present in the tight junctions, as judged from its co-localisation with the tight junction protein ZO-1, however, PAR- 6 was also detected in the cell nucleus, and co-immunoprecipitation experiments, employing Cos-1 cells, demonstrated that mammalianPAR-6 and PAR-3 formed a direct complex.
Abstract: A mammalian homologue of the PDZ domain containing Caenorhabditis elegans protein PAR-6 was found in a yeast two-hybrid system screen as binding to the Rho family member Cdc42. PAR-6 contains a PDZ domain and in C. elegans it has been shown to be crucial for the asymmetric cleavage and establishment of cell polarity during the first cell divisions in the growing embryo. Mammalian PAR-6 interacted with Cdc42 and Rac1 both in the yeast two-hybrid system and in in vitro binding assays. Co-immunoprecipitation experiments, employing transiently transfected Cos-1 cells, further confirmed that Cdc42 and Rac1 are physiological binding partners for PAR-6. We found that, in epithelial Madin-Darby canine kidney cells (MDCK), endogenous PAR-6 was present in the tight junctions, as judged from its co-localisation with the tight junction protein ZO-1, however, PAR-6 was also detected in the cell nucleus. Stimulation of MDCK cells with scatter factor/hepatocyte growth factor induced a loss of PAR-6 from the areas of cell-cell contacts in conformity with their progressive breakdown. In C. elegans PAR-6 co-localises with PAR-3 and has been suggested to form a direct complex. In agreement with earlier studies, mammalian PAR-3 was found to be present in tight junctions of MDCK cells but, in contrast to PAR-6, the protein could not be detected in the nucleus. Furthermore, co-immunoprecipitation experiments, employing Cos-1 cells, demonstrated that mammalian PAR-6 and PAR-3 formed a direct complex. These findings, together with the reported roles of PAR-6 and PAR-3 in C. elegans, suggest that Cdc42 and Rac1 and PAR-6/PAR-3 are involved in the establishment of cell polarity in epithelial cells.