scispace - formally typeset
Search or ask a question

Showing papers on "Lactococcus lactis published in 2007"


Journal ArticleDOI
TL;DR: The availability of the L. lactis MG1363 genome sequence will reinforce its status as the prototype among lactic acid bacteria through facilitation of further applied and fundamental research.
Abstract: Lactococcus lactis is of great importance for the nutrition of hundreds of millions of people worldwide. This paper describes the genome sequence of Lactococcus lactis subsp. cremoris MG1363, the lactococcal strain most intensively studied throughout the world. The 2,529,478-bp genome contains 81 pseudogenes and encodes 2,436 proteins. Of the 530 unique proteins, 47 belong to the COG (clusters of orthologous groups) functional category "carbohydrate metabolism and transport," by far the largest category of novel proteins in comparison with L. lactis subsp. lactis IL1403. Nearly one-fifth of the 71 insertion elements are concentrated in a specific 56-kb region. This integration hot-spot region carries genes that are typically associated with lactococcal plasmids and a repeat sequence specifically found on plasmids and in the "lateral gene transfer hot spot" in the genome of Streptococcus thermophilus. Although the parent of L. lactis MG1363 was used to demonstrate lysogeny in Lactococcus, L. lactis MG1363 carries four remnant/satellite phages and two apparently complete prophages. The availability of the L. lactis MG1363 genome sequence will reinforce its status as the prototype among lactic acid bacteria through facilitation of further applied and fundamental research.

417 citations


Journal ArticleDOI
TL;DR: The findings of this study provide a potential basis for exploiting selected cheese-related lactobacilli to develop health-promoting dairy products enriched in GABA.
Abstract: The concentrations of γ-aminobutyric acid (GABA) in 22 Italian cheese varieties that differ in several technological traits markedly varied from 0.26 to 391 mg kg−1. Presumptive lactic acid bacteria were isolated from each cheese variety (total of 440 isolates) and screened for the capacity to synthesize GABA. Only 61 isolates showed this activity and were identified by partial sequencing of the 16S rRNA gene. Twelve species were found. Lactobacillus paracasei PF6, Lactobacillus delbrueckii subsp. bulgaricus PR1, Lactococcus lactis PU1, Lactobacillus plantarum C48, and Lactobacillus brevis PM17 were the best GABA-producing strains during fermentation of reconstituted skimmed milk. Except for L. plantarum C48, all these strains were isolated from cheeses with the highest concentrations of GABA. A core fragment of glutamate decarboxylase (GAD) DNA was isolated from L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48 by using primers based on two highly conserved regions of GAD. A PCR product of ca. 540 bp was found for all the strains. The amino acid sequences deduced from nucleotide sequence analysis showed 98, 99, 90, and 85% identity to GadB of L. plantarum WCFS1 for L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48, respectively. Except for L. lactis PU1, the three lactobacillus strains survived and synthesized GABA under simulated gastrointestinal conditions. The findings of this study provide a potential basis for exploiting selected cheese-related lactobacilli to develop health-promoting dairy products enriched in GABA.

386 citations


Journal ArticleDOI
TL;DR: The data strongly support the hygiene hypothesis, which states that an environment rich in microbiologic structures, such as a farming environment, might protect against the development of allergies.
Abstract: Background Children who grow up in a farming environment show lower levels of atopic sensitization, hay fever, and asthma than children of the same age not living in such an environment. A number of investigations provided good evidence that this is due to an early-life contact with cowsheds, farm animals, and/or consumption of products like raw milk. Also, it had been indicated that microorganisms might have an important effect on the development of allergies, and thus the question arose of which farm microbial organisms, their products, or both might induce or influence allergy-protective mechanisms. Objective We sought to gain further insight into the potential allergy-protective properties of microbes isolated from the farming environment. Methods Of a number of bacterial species identified in cowsheds of farms, 2 were selected, isolated, and characterized, namely Acinetobacter lwoffii F78 and Lactococcus lactis G121. The isolates were investigated with regard to their activation of pattern-recognition receptors, the maturation of human monocyte-derived dendritic cells, the upregulation of inflammatory cytokines, the T H 1-polarizing Notch ligand expression, and their influence on the allergic phenotype. Results It is shown that both bacterial isolates were able to reduce allergic reactions in mice, to activate mammalian cells in vitro , and to induce a T H 1-polarizing program in dendritic cells. Conclusion Our data strongly support the hygiene hypothesis, which states that an environment rich in microbiologic structures, such as a farming environment, might protect against the development of allergies. Clinical implications This work provides the first data on a potential application of cowshed bacteria in allergy protection.

263 citations


Journal ArticleDOI
TL;DR: A new bacterial strain, displaying potent antimicrobial properties against gram-negative and gram-positive pathogenic bacteria, was isolated from food and unequivocally characterized as a novel lantibiotic, with a high degree of posttranslational modifications.
Abstract: A new bacterial strain, displaying potent antimicrobial properties against gram-negative and gram-positive pathogenic bacteria, was isolated from food. Based on its phenotypical and biochemical properties as well as its 16S rRNA gene sequence, the bacterium was identified as Paenibacillus polymyxa and it was designated as strain OSY-DF. The antimicrobials produced by this strain were isolated from the fermentation broth and subsequently analyzed by liquid chromatography-mass spectrometry. Two antimicrobials were found: a known antibiotic, polymyxin E1, which is active against gram-negative bacteria, and an unknown 2,983-Da compound showing activity against gram-positive bacteria. The latter was purified to homogeneity, and its antimicrobial potency and proteinaceous nature were confirmed. The antimicrobial peptide, designated paenibacillin, is active against a broad range of food-borne pathogenic and spoilage bacteria, including Bacillus spp., Clostridium sporogenes, Lactobacillus spp., Lactococcus lactis, Leuconostoc mesenteroides, Listeria spp., Pediococcus cerevisiae, Staphylococcus aureus, and Streptococcus agalactiae. Furthermore, it possesses the physico-chemical properties of an ideal antimicrobial agent in terms of water solubility, thermal resistance, and stability against acid/alkali (pH 2.0 to 9.0) treatment. Edman degradation, mass spectroscopy, and nuclear magnetic resonance were used to sequence native and chemically modified paenibacillin. While details of the tentative sequence need to be elucidated in future work, the peptide was unequivocally characterized as a novel lantibiotic, with a high degree of posttranslational modifications. The coproduction of polymyxin E1 and a lantibiotic is a finding that has not been reported earlier. The new strain and associated peptide are potentially useful in food and medical applications.

217 citations


Journal ArticleDOI
TL;DR: Based on mucus adhesion, competitive exclusion, and suppression of fish pathogen growth, the selected LAB strains can be considered for future challenge experiments in fish as a very promising alternative to the use of chemotherapeutic agents.

163 citations


Journal ArticleDOI
TL;DR: Gel retardation experiments, Northern blotting, and enzyme assays showed that CcpA represses its own expression and activates the expression of the divergently oriented prolidase-encoding pepQ gene, which constitutes a link between regulation of carbon metabolism and regulation of nitrogen metabolism.
Abstract: Carbon catabolite control protein A (CcpA) is the main regulator involved in carbon catabolite repression in gram-positive bacteria. Time series gene expression analyses of Lactococcus lactis MG1363 and L. lactis MG1363 Delta ccpA using DNA microarrays were used to define the CcpA regulon of L. lactis. Based on a comparison of the transcriptome data with putative CcpA binding motifs (cre sites) in promoter sequences in the genome of L. lactis, 82 direct targets of CcpA were predicted. The main differences in time-dependent expression of CcpA-regulated genes were differences between the exponential and transition growth phases. Large effects were observed for carbon and nitrogen metabolic genes in the exponential growth phase. Effects on nucleotide metabolism genes were observed primarily in the transition phase. Analysis of the positions of putative ere sites revealed that there is a link between either repression or activation and the location of the ere site within the promoter region. Activation was observed when putative ere sites were located upstream of the hexameric -35 sequence at an average position of -56.5 or further upstream with decrements of 10.5 bp. Repression was observed when the ere site was located in or downstream of putative -35 and -10 sequences. The highest level of repression was observed when the cre site was present at a defined side of the DNA helix relative to the canonical -10 sequence. Gel retardation experiments, Northern blotting, and enzyme assays showed that CcpA represses its own expression and activates the expression of the divergently oriented prolidase-encoding pepQ gene, which constitutes a link between regulation of carbon metabolism and regulation of nitrogen metabolism.

162 citations


Journal ArticleDOI
TL;DR: The structural requirements and relevance of the N-terminal thioether rings of nisin are investigated by randomization of the ring A and B positions and provide a basis for the design and synthesis of tailor-made analogs with desired activities.
Abstract: Nisin A is a pentacyclic antibiotic peptide produced by various Lactococcus lactis strains. Nisin displays four different activities: (i) it autoinduces its own synthesis; (ii) it inhibits the growth of target bacteria by membrane pore formation; (iii) it inhibits bacterial growth by interfering with cell wall synthesis; and, in addition, (iv) it inhibits the outgrowth of spores. Here we investigate the structural requirements and relevance of the N-terminal thioether rings of nisin by randomization of the ring A and B positions. The data demonstrate that: (i) mutation of ring A results in variants with enhanced activity and a modulated spectrum of target cells; (ii) for the cell growth-inhibiting activity of nisin, ring A is rather promiscuous with respect to its amino acid composition, whereas the bulky amino acid residues in ring B abolish antimicrobial activity; (iii) C-terminally truncated nisin A mutants lacking rings D and E retain significant antimicrobial activity but are unable to permeabilize the target membrane; (iv) the dehydroalanine in ring A is not essential for the inhibition of the outgrowth of Bacillus cells; (v) some ring A mutants have significant antimicrobial activities but have decreased autoinducing activities; (vi) the opening of ring B eliminates antimicrobial activity while retaining autoinducing activity; and (vii) some ring A mutants escape the nisin immune system(s) and are toxic to the nisin-producing strain NZ9700. These data demonstrate that the various activities of nisin can be engineered independently and provide a basis for the design and synthesis of tailor-made analogs with desired activities.

147 citations


Journal ArticleDOI
TL;DR: The results suggest that a microorganism bioengineered to deliver IL-10 in the gut can decrease food-induced anaphylaxis and provide an option to prevent IgE-type sensitization to common food allergens.
Abstract: Background Because tolerance to food is potentially modulated by IL-10, strategies to prevent food allergy should favor an increased delivery of IL-10 to the gut. Objectives We hypothesized that administration of a Lactococcus lactis transfected to secrete murine IL-10 could prevent sensitization in a mouse model of food allergy. Methods Before each oral sensitization with β-lactoglobulin in the presence of cholera toxin, young mice were administered the transfected Lactococcus lactis . Antigen-induced anaphylaxis after oral challenge assessed clinical protection achieved by the pretreatment. Serum and feces antigen-specific antibody concentrations were sequentially measured. Antibody titers were correlated with antibody and IL-10–secreting cell numbers in the spleen and in Peyer patches. Results Pretreatment with transfected Lactococcus lactis contributed to diminish anaphylaxis significantly, and inhibit antigen-specific serum IgE and IgG 1 production strongly. In addition, transfected Lactococcus lactis increased the production of antigen-specific IgA in the gut. Variations of antibody levels in the serum and the gut correlated with the numbers of antibody-producing cells. In addition, the presence of exogenous IL-10 in the gut by transfected Lactococcus lactis induced IL-10 secretion by Peyer patches cells. Increased IL-10 titers were also measured in the plasma. Conclusion These results suggest that a microorganism bioengineered to deliver IL-10 in the gut can decrease food-induced anaphylaxis and provide an option to prevent IgE-type sensitization to common food allergens. Clinical implications Nonpathogenic IL-10–producing microorganisms in the gut could have a potential to prevent systemic food-induced anaphylaxis.

146 citations


Journal ArticleDOI
TL;DR: A significant increase in body weight gain and final body weight was obtained in the groups fed diets supplemented with lactic acid bacteria as compared with the non-treated groups, and the results offered the possibility of using the piglet feed as a vehicle to administer the four probiotic bacteria.

144 citations


Journal ArticleDOI
TL;DR: The results described here clarified the fact that lacticin Q belongs to a new family of class II bacteriocins and that it can be employed as an alternative to or in combination with nisin A.
Abstract: Lactococcus lactis QU 5 isolated from corn produces a novel bacteriocin, termed lacticin Q. By acetone precipitation, cation-exchange chromatography, and reverse-phase high-performance liquid chromatography, lacticin Q was purified from the culture supernatant of this organism, and its molecular mass was determined to be 5,926.50 Da by mass spectrometry. Subsequent analyses of amino acid and DNA sequences revealed that lacticin Q comprised 53 amino acid residues and that its N-terminal methionine residue was formylated. In contrast to most bacteriocins produced by gram-positive bacteria, lacticin Q had no N-terminal extensions such as leader or signal sequences. It showed 66% and 48% identity to AucA, a hypothetical protein from Corynebacterium jeikeium plasmid pA501, and aureocin A53, a bacteriocin from Staphylococcus aureus A53, respectively. The characteristics of lacticin Q were determined and compared to those of nisin A. Similar to nisin A, lacticin Q exhibited antibacterial activity against various gram-positive bacteria. Lacticin Q was very stable against heat treatment and changes in pH; in particular, it was stable at alkaline pH values, while nisin A was inactivated. Moreover, lacticin Q induced ATP efflux from a Listeria sp. strain in a shorter time and at a lower concentration than nisin A, indicating that the former affected indicator cells in a different manner from that of the latter. The results described here clarified the fact that lacticin Q belongs to a new family of class II bacteriocins and that it can be employed as an alternative to or in combination with nisin A.

140 citations


Journal ArticleDOI
TL;DR: A core fragment of glutamate decarboxylase (GAD) DNA was isolated from the L. brevis OPK-3, having 84.292 mg/L/h of gamma-aminobutyric acid (GABA) productivity, and the amino acid sequence deduced showed 83%, 71%, and 60% identity to the Lactobacillus plantarum GAD, Lactococcus lactis G AD, and Listeria monocytogenes G

Journal ArticleDOI
TL;DR: The results showed that two of the strains, identified as P. acidilactici by polymerase chain reaction, had the potential to be further tested as starter cultures in pilot processing of Iberian sausages.
Abstract: A total of 192 lactic acid bacteria were isolated from 2 types of naturally fermented dry sausages at 3 different stages of the ripening process in order to select the most suitable strains as starter cultures in dry-cured sausage manufacture according to their technological characteristics such as glucose fermentation, lactic and acetic acid production, and proteolytic, lipolytic, and antimicrobial activities. Identification of the isolates revealed that 31.2% were Pediococcus pentosaceus, 26.9% Lactococcus lactis, 18.6% Pediococcus acidilactici, 17% Lactobacillus brevis, and sporadic isolates of Leuconostoc mesenteroides, Lactobacillus plantarum, and Lactobacillus curvatus. Most of the strains did not produce gas from glucose and showed the capacity to produce lactic acid rapidly. Some 25% of the strains were able to degrade tributyrin (esterase activity), but none showed lipolytic activity against olive oil and pork fat. Only 3 strains of P. acidilactici showed weak proteolytic activity against myofibrillar or sarcoplasmic proteins. Also, the same strains showed antimicrobial activity against Listeria monocytogenes. Nine strains with the best properties were preselected and tested for biogenic amine production. The results showed that two of the strains, identified as P. acidilactici by polymerase chain reaction, had the potential to be further tested as starter cultures in pilot processing of Iberian sausages.

Journal ArticleDOI
TL;DR: HA was made possible to be produced by a generally recognized as safe Lactococcus lactis by coexpressing HA synthase and uridine diphosphate–glucose dehydrogenase (UDP-GlcDH) of Streptococcus equi subsp.
Abstract: Microbial hyaluronic acid (HA), commonly produced by pathogenic Streptococcus, was made possible to be produced by a generally recognized as safe Lactococcus lactis by coexpressing HA synthase and uridine diphosphate–glucose dehydrogenase (UDP-GlcDH) of Streptococcus equi subsp. zooepidemicus in a nisin-controlled expression (NICE) system. With scarce expressed HA synthase alone, the constructed recombinant L. lactis (LL-NA) strain could produce HA with a concentration about 0.08 g/l in the M17 medium supplemented with 1% (w/v) glucose. In contrast to HA synthase, UDP-GlcDH of Streptococcus could be overexpressed in the NICE system. With coexpression of heterologous UDP-GlcDH with HA synthase, the constructed LL-NAB strain grew slightly slower to a concentration about 10% lower that of the LL-NA strain. However, the HA concentration produced was enhanced about eightfold to 0.65 g/l.

Journal ArticleDOI
TL;DR: A generic method for high-throughput cloning in bacteria that are less amenable to conventional DNA manipulations is developed and demonstrated VBEx proof of principle for Lactococcus lactis; the method can be adapted to all organisms for which plasmids are available.
Abstract: We developed a generic method for high-throughput cloning in bacteria that are less amenable to conventional DNA manipulations. The method involves ligation-independent cloning in an intermediary Escherichia coli vector, which is rapidly converted via vector-backbone exchange (VBEx) into an organism-specific plasmid ready for high-efficiency transformation. We demonstrated VBEx proof of principle for Lactococcus lactis, but the method can be adapted to all organisms for which plasmids are available.

Journal ArticleDOI
TL;DR: The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses to find two major genomic lineages within L. lactis.
Abstract: The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)5-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene.

Journal ArticleDOI
TL;DR: LcrV-secreting L lactis decreased experimentally induced intestinal inflammation in 2 murine models of colitis, highlighting the potential of using pathogen-derived immunomodulating molecules in vivo as novel therapeutics for inflammatory bowel diseases.

Journal ArticleDOI
TL;DR: The crystal structures provide insights into the structural basis of substrate selectivity and stereoselectivity of the enzyme and thus are suitable as a framework for the redesign of the substrate profile in carboligation reactions.
Abstract: The thiamin diphosphate (ThDP) dependent branched-chain keto acid decarboxylase (KdcA) from Lactococcus lactis catalyzes the decarboxylation of 3-methyl-2-oxobutanoic acid to 3-methylpropanal (isobutyraldehyde) and CO2. The enzyme is also able to catalyze carboligation reactions with an exceptionally broad substrate range, a feature that makes KdcA a potentially valuable biocatalyst for C—C bond formation, in particular for the enzymatic synthesis of diversely substituted 2-hydroxyketones with high enantio­selectivity. The crystal structures of recombinant holo-KdcA and of a complex with an inhibitory ThDP analogue mimicking a reaction intermediate have been determined to resolutions of 1.6 and 1.8 A, respectively. KdcA shows the fold and cofactor–protein interactions typical of thiamin-dependent enzymes. In contrast to the tetrameric assembly displayed by most other ThDP-dependent decarboxylases of known structure, KdcA is a homodimer. The crystal structures provide insights into the structural basis of substrate selectivity and stereoselectivity of the enzyme and thus are suitable as a framework for the redesign of the substrate profile in carboligation reactions.

01 Jan 2007
TL;DR: In this paper, low calcium response V (LcrV) protein synthesized by gram-negative, pathogenic yersiniae participates in bacterial evasion of the host's innate immune response by stimulating synthesis of the anti-inflammatory interleukin (IL)-10 and preventing the activation of proinflammatory cytokines.
Abstract: Background & Aims: The low calcium response V (LcrV) protein synthesized by gram-negative, pathogenic yersiniae participates in bacterial evasion of the host’s innate immune response by stimulating synthesis of the anti-inflammatory interleukin (IL)-10 and preventing the activation of proinflammatory cytokines. Methods: We genetically engineered the food-grade bacterium Lactococcus lactis to secrete the LcrV protein from the enteropathogenic species Yersinia pseudotuberculosis. The protective and therapeutic potential of orally administered LcrV-secreting L lactis was evaluated in 2 models of acute experimental colitis (induced by trinitrobenzene sulfonic acid [TNBS] and dextran sodium sulfate [DSS], respectively) in wild-type and knockout mice. Results: Oral administration of LcrV-secreting L lactis led to active delivery of LcrV and induction of IL-10 (via a Tolllike receptor 2– dependent pathway) in the colon and prevented TNBS-induced colitis, in contrast to the L lactis control not producing LcrV. Down-regulation of tissue inflammatory markers correlated well with the reduction in damage to the colonic mucosa. In contrast, TNBS-induced colitis was not prevented in IL-10 / mice pretreated with LcrV-secreting L lactis, thus showing that IL-10 is required for LcrV protection. Administration of LcrV-secreting L lactis also proved to be very effective in preventing and treating acute DSS-induced colitis. Conclusions: LcrV-secreting L lactis decreased experimentally induced intestinal inflammation in 2 murine models of colitis. This novel approach highlights the potential of using pathogen-derived immunomodulating molecules in vivo as novel therapeutics for inflammatory bowel diseases.

Journal ArticleDOI
TL;DR: Elevated folate levels can be obtained only by the overexpression of folate combined with the overexpressing of the pABA biosynthesis gene cluster, suggesting the need for a balanced carbon flux through the folate and pA BA biosynthesis pathway in the wild-type strain.
Abstract: The pab genes for para-aminobenzoic acid (pABA) biosynthesis in Lactococcus lactis were identified and characterized. In L. lactis NZ9000, only two of the three genes needed for pABA production were initially found. No gene coding for 4-amino-4-deoxychorismate lyase (pabC) was initially annotated, but detailed analysis revealed that pabC was fused with the 3' end of the gene coding for chorismate synthetase component II (pabB). Therefore, we hypothesize that all three enzyme activities needed for pABA production are present in L. lactis, allowing for the production of pABA. Indeed, the overexpression of the pABA gene cluster in L. lactis resulted in elevated pABA pools, demonstrating that the genes are involved in the biosynthesis of pABA. Moreover, a pABA knockout (KO) strain lacking pabA and pabBC was constructed and shown to be unable to produce folate when cultivated in the absence of pABA. This KO strain was unable to grow in chemically defined medium lacking glycine, serine, nucleobases/nucleosides, and pABA. The addition of the purine guanine, adenine, xanthine, or inosine restored growth but not the production of folate. This suggests that, in the presence of purines, folate is not essential for the growth of L. lactis. It also shows that folate is not strictly required for the pyrimidine biosynthesis pathway. L. lactis strain NZ7024, overexpressing both the folate and pABA gene clusters, was found to produce 2.7 mg of folate/liter per optical density unit at 600 nm when the strain was grown on chemically defined medium without pABA. This is in sharp contrast to L. lactis strains overexpressing only one of the two gene clusters. Therefore, we conclude that elevated folate levels can be obtained only by the overexpression of folate combined with the overexpression of the pABA biosynthesis gene cluster, suggesting the need for a balanced carbon flux through the folate and pABA biosynthesis pathway in the wild-type strain.

Journal ArticleDOI
TL;DR: Observations verify that carbohydrate-starved lactococci attain a nonculturable state wherein sugar metabolism, cell division, and autolysis are repressed, allowing the cells to maintain transcription, metabolic activity, and energy production during a state that produces new metabolites not associated with logarithmic growth.
Abstract: This study characterized the ability of lactococci to become nonculturable under carbohydrate starvation while maintaining metabolic activity. We determined the changes in physiological parameters and extracellular substrate levels of multiple lactococcal strains under a number of environmental conditions along with whole-genome expression profiles. Three distinct phases were observed, logarithmic growth, sugar exhaustion, and nonculturability. Shortly after carbohydrate starvation, each lactococcal strain lost the ability to form colonies on solid media but maintained an intact cell membrane and metabolic activity for over 3.5 years. ML3, a strain that metabolized lactose rapidly, reached nonculturability within 1 week. Strains that metabolized lactose slowly (SK11) or not at all (IL1403) required 1 to 3 months to become nonculturable. In all cases, the cells contained at least 100 pM of intracellular ATP after 6 months of starvation and remained at that level for the remainder of the study. Aminopeptidase and lipase/esterase activities decreased below detection limits during the nonculturable phase. During sugar exhaustion and entry into nonculturability, serine and methionine were produced, while glutamine and arginine were depleted from the medium. The cells retained the ability to transport amino acids via proton motive force and peptides via ATP-driven translocation. The addition of branched-chain amino acids to the culture medium resulted in increased intracellular ATP levels and new metabolic products, indicating that branched-chain amino acid catabolism resulted in energy and metabolic products to support survival during starvation. Gene expression analysis showed that the genes responsible for sugar metabolism were repressed as the cells entered nonculturability. The genes responsible for cell division were repressed, while autolysis and cell wall metabolism genes were induced neither at starvation nor during nonculturability. Taken together, these observations verify that carbohydrate-starved lactococci attain a nonculturable state wherein sugar metabolism, cell division, and autolysis are repressed, allowing the cells to maintain transcription, metabolic activity, and energy production during a state that produces new metabolites not associated with logarithmic growth.

Journal ArticleDOI
TL;DR: The method described was found to be a very simple, rapid, specific, and low-cost tool for the identification of unknown strains of LAB.
Abstract: The aim of this study was to identify lactic acid bacteria (LAB) using polymerase chain reaction (PCR) amplification of variable regions of the 16S rRNA gene. Thirteen LAB strains were isolated from the intestinal microbiota of healthy salmonids. A approximately 500-bp region of the highly conserved 16S rRNA gene was PCR-amplified and following this, a portion of the amplicon (272-bp) including the V1 and V2 variable regions was sequenced. The sequence containing both the V1 and V2 region provided strong evidence for the identification of LAB. The LAB strains were identified as Carnobacterium maltaromaticum, Lactobacillus curvatus, Lactobacillus sakei, Lactobacillus plantarum, Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. lactis, and Leuconostoc mesenteroides. The method described was found to be a very simple, rapid, specific, and low-cost tool for the identification of unknown strains of LAB.

Journal ArticleDOI
TL;DR: This paper is the first report on functional lactic acid bacterial composition in some lesser-known ethnic fermented milk products of the Himalayas and some strains showed a high degree of hydrophobicity, suggesting these strains may have useful adhesive potential.
Abstract: Ethnic people of the Himalayan regions of India, Nepal, Bhutan and China consume a variety of indigenous fermented milk products made from cows milk as well as yaks milk. These lesser-known ethnic fermented foods are dahi, mohi, chhurpi, somar, philu and shyow. The population of lactic acid bacteria (LAB) ranged from 107 to 108 cfu/g in these Himalayan milk products. A total of 128 isolates of LAB were isolated from 58 samples of ethnic fermented milk products collected from different places of India, Nepal and Bhutan. Based on phenotypic characterization including API sugar test, the dominant lactic acid bacteria were identified as Lactobacillus bifermentans, Lactobacillus paracasei subsp. pseudoplantarum, Lactobacillus kefir, Lactobacillus hilgardii, Lactobacillus alimentarius, Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris and Enterococcus faecium. LAB produced a wide spectrum of enzymes and showed high galactosidase, leucine-arylamidase and phosphatase activities. They showed antagonistic properties against selected Gram-negative bacteria. None of the strains produced bacteriocin and biogenic amines under the test conditions used. Most strains of LAB coagulated skim milk with a moderate drop in pH. Some strains of LAB showed a high degree of hydrophobicity, suggesting these strains may have useful adhesive potential. This paper is the first report on functional lactic acid bacterial composition in some lesser-known ethnic fermented milk products of the Himalayas.

Journal ArticleDOI
TL;DR: The results indicate that SpxB binding to RNA polymerase constitutes a previously missing link in the multistep response to cell envelope stress, provoked by PG hydrolysis with lysozyme, and suggest that the two-component system CesSR responds to this stress by inducing Spx B, thus favoring its interactions with RNA polymerases.

Journal ArticleDOI
TL;DR: In this paper, the authors used Lactococcus lactis to secrete ovalbumin (OVA) and evaluated its ability to induce OVA-specific tolerance in OVA T-cell receptor (TCR) transgenic mice (DO11.10).

Journal ArticleDOI
TL;DR: CesSR of L. lactis controls the immediate response to cell envelope stress in this organism and is proposed to be the cause of susceptibility to these antimicrobials.
Abstract: The non-pore-forming bacteriocin lactococcin 972 (Lcn972) inhibits the synthesis of peptidoglycan at the septum in Lactococcus lactis. In this work, the genome-wide response of L. lactis MG1614 to Lcn972 was analysed by DNA microarrays. We found 26 genes to be significantly upregulated. Most of these encode membrane proteins of unknown function and the two-component system (TCS) CesSR (formerly known as TCS-D). CesSR orchestrates the response of L. lactis to Lcn972. None of the genes upregulated in L. lactis MG1614 were induced by Lcn972 in L. lactisDeltacesR. In silico analysis of the promoter regions of the upregulated genes revealed a novel conserved 16 bp palindromic sequence at positions -73/-72 or -46 relative to the putative transcriptional start sites. Point mutations and deletion of this CesR box abolished regulation. Purified His-tagged CesR interacts in electrophoretic mobility shift assays with several promoters carrying the CesR box. The CesR box is also present in other Gram-positive cocci, upstream of genes involved in cell envelope stress. CesSR was strongly induced by lipid II-interacting cationic polypeptides and disruption of cesR increased susceptibility to these antimicrobials. We propose here that CesSR of L. lactis controls the immediate response to cell envelope stress in this organism.

Journal ArticleDOI
TL;DR: A rapid screening method based on ultrafiltration and gel permeation chromatography and a screening through the polymerase chain reaction (PCR) revealed many positive strains, but statistical analysis did not reveal any relationship between the type and origin of the strains, the presence or absence of a capsular polysaccharide or EPS.

Journal ArticleDOI
TL;DR: To determine the contributions of nonpathogenic microflora to the occurrence and spread of antibiotic resistance (AR) genes in the food chain, 123 lactic acid bacteria were isolated from 29 samples of raw and processed pork and chicken meat products that had previously tested positive for one or more AR genes that encode clinically relevant ARs.

Journal ArticleDOI
TL;DR: To verify to what degree reducing capacity is a characterizing parameter of a species, and of the strains themselves within a given species, of lactic acid bacteria.
Abstract: Aims: To verify to what degree reducing capacity is a characterizing parameter of a species, and of the strains themselves within a given species, of lactic acid bacteria. Methods and Results: Eighty-eight strains belonging to 10 species of lactic acid bacteria (LAB) isolated from traditional Italian cheeses were studied for their reduction activity: Enterococcus faecalis, Enterococcus faecium, Enterococcus durans, Streptococcus thermophilus, Lactococcus lactis ssp. lactis, Lactobacillus paracasei ssp. paracasei, Lactobacillus plantarum, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus helveticus and Pediococcus pentosaceus. It was observed that the lactococci reached minimum redox potential before the lactobacilli. The reduction rate of Enterococcus spp. and L. lactis ssp. lactis was higher than that of the streptococci and Lactobacillus spp. All the P. pentosaceus strains had poor reduction activity compared with the other species. Conclusions: The evolution of the redox potential in milk over a time span of 24 h has been found to be a parameter that characterizes a species: the different courses corresponding to the species in question are clearly evident, and interesting differences can also be noted within the same species. Significance and Impact of the Study: The reduction aptitude of strains might be used to select and adapt appropriate strains for use as starters for dairy products.

Journal ArticleDOI
TL;DR: It is found that several mutant ACPs containing substitutions of ACP residues reported previously to be required for ACP function in vitro support normal growth of the acpP mutant strain, however, several mutant proteins reported to be severely defective in vitro failed to support growth ofThe acPP strain in vivo (or supported only weak growth).

Journal ArticleDOI
TL;DR: The results suggest that the acid stress resistance of starter culture can be improved by selecting L. lactis strains capable of producing or importing GSH.
Abstract: Previously we showed that glutathione (GSH) can protect Lactococcus lactis against oxidative stress (Y. Li et al., Appl. Environ. Microbiol. 69:5739-5745, 2003). In the present study, we show that the GSH imported by L. lactis subsp. cremoris SK11 or produced by engineered L. lactis subsp. cremoris NZ9000 can protect both strains against a long-term mild acid challenge (pH 4.0) and a short-term severe acid challenge (pH 2.5). This shows for the first time that GSH can protect a gram-positive bacterium against acid stress. During acid challenge, strain SK11 containing imported GSH and strain NZ9000 containing self-produced GSH exhibited significantly higher intracellular pHs than the control. Furthermore, strain SK11 containing imported GSH had a significantly higher activity of glyceraldehyde-3-phosphate dehydrogenase than the control. These results suggest that the acid stress resistance of starter culture can be improved by selecting L. lactis strains capable of producing or importing GSH.