scispace - formally typeset
Search or ask a question

Showing papers on "Nucleolus published in 2005"


Journal ArticleDOI
06 Jan 2005-Nature
TL;DR: The data establish a quantitative proteomic approach for the temporal characterization of protein flux through cellular organelles and demonstrate that the nucleolar proteome changes significantly over time in response to changes in cellular growth conditions.
Abstract: The nucleolus is a key organelle that coordinates the synthesis and assembly of ribosomal subunits and forms in the nucleus around the repeated ribosomal gene clusters. Because the production of ribosomes is a major metabolic activity, the function of the nucleolus is tightly linked to cell growth and proliferation, and recent data suggest that the nucleolus also plays an important role in cell-cycle regulation, senescence and stress responses. Here, using mass-spectrometry-based organellar proteomics and stable isotope labelling, we perform a quantitative analysis of the proteome of human nucleoli. In vivo fluorescent imaging techniques are directly compared to endogenous protein changes measured by proteomics. We characterize the flux of 489 endogenous nucleolar proteins in response to three different metabolic inhibitors that each affect nucleolar morphology. Proteins that are stably associated, such as RNA polymerase I subunits and small nuclear ribonucleoprotein particle complexes, exit from or accumulate in the nucleolus with similar kinetics, whereas protein components of the large and small ribosomal subunits leave the nucleolus with markedly different kinetics. The data establish a quantitative proteomic approach for the temporal characterization of protein flux through cellular organelles and demonstrate that the nucleolar proteome changes significantly over time in response to changes in cellular growth conditions.

1,102 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the process of nucleolar segregation and capping involves energy-dependent repositioning of nuclear proteins and RNAs and emphasize the dynamic characteristics of nuclear domain formation in response to cellular stress.
Abstract: Nucleolar segregation is observed under some physiological conditions of transcriptional arrest. This process can be mimicked by transcriptional arrest after actinomycin D treatment leading to the segregation of nucleolar components and the formation of unique structures termed nucleolar caps surrounding a central body. These nucleolar caps have been proposed to arise from the segregation of nucleolar components. We show that contrary to prevailing notion, a group of nucleoplasmic proteins, mostly RNA binding proteins, relocalized from the nucleoplasm to a specific nucleolar cap during transcriptional inhibition. For instance, an exclusively nucleoplasmic protein, the splicing factor PSF, localized to nucleolar caps under these conditions. This structure also contained pre-rRNA transcripts, but other caps contained either nucleolar proteins, PML, or Cajal body proteins and in addition nucleolar or Cajal body RNAs. In contrast to the capping of the nucleoplasmic components, nucleolar granular component proteins dispersed into the nucleoplasm, although at least two (p14/ARF and MRP RNA) were retained in the central body. The nucleolar caps are dynamic structures as determined using photobleaching and require energy for their formation. These findings demonstrate that the process of nucleolar segregation and capping involves energy-dependent repositioning of nuclear proteins and RNAs and emphasize the dynamic characteristics of nuclear domain formation in response to cellular stress.

330 citations


Journal ArticleDOI
TL;DR: Data suggest that NPM inhibits ARF's p53-dependent activity by targeting it to nucleoli and impairing ARF-Mdm2 association, and suggests that it is sequestered and held inactive in that compartment by a nucleolar phosphoprotein, nucleophosmin (NPM).
Abstract: The ARF tumor suppressor is a nucleolar protein that activates p53-dependent checkpoints by binding Mdm2, a p53 antagonist. Despite persuasive evidence that ARF can bind and inactivate Mdm2 in the nucleoplasm, the prevailing view is that ARF exerts its growth-inhibitory activities from within the nucleolus. We suggest ARF primarily functions outside the nucleolus and provide evidence that it is sequestered and held inactive in that compartment by a nucleolar phosphoprotein, nucleophosmin (NPM). Most cellular ARF is bound to NPM regardless of whether cells are proliferating or growth arrested, indicating that ARF-NPM association does not correlate with growth suppression. Notably, ARF binds NPM through the same domains that mediate nucleolar localization and Mdm2 binding, suggesting that NPM could control ARF localization and compete with Mdm2 for ARF association. Indeed, NPM knockdown markedly enhanced ARF-Mdm2 association and diminished ARF nucleolar localization. Those events correlated with greater ARF-mediated growth suppression and p53 activation. Conversely, NPM overexpression antagonized ARF function while increasing its nucleolar localization. These data suggest that NPM inhibits ARF's p53-dependent activity by targeting it to nucleoli and impairing ARF-Mdm2 association.

305 citations


Journal ArticleDOI
TL;DR: The multiple functions of H/ACA RNPs appear to be reflected in the complex phenotype of dyskeratosis congenita, with an emphasis on the role of the RNP proteins.
Abstract: The H/ACA ribonucleoproteins (RNPs) are known as one of the two major classes of small nucleolar RNPs They predominantly guide the site-directed pseudouridylation of target RNAs, such as ribosomal and spliceosomal small nuclear RNAs In addition, they process ribosomal RNA and stabilize vertebrate telomerase RNA Taken together, the function of H/ACA RNPs is essential for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance Every cell contains 100-200 different species of H/ACA RNPs, each consisting of the same four core proteins and one function-specifying H/ACA RNA Most of these RNPs reside in nucleoli and Cajal bodies and mediate the isomerization of specific uridines to pseudouridines Catalysis of the reaction is mediated by the putative pseudouridylase NAP57 (dyskerin, Cbf5p) Unexpectedly, mutations in this housekeeping enzyme are the major determinants of the inherited bone marrow failure syndrome dyskeratosis congenita This review details the many diverse functions of H/ACA RNPs, some yet to be uncovered, with an emphasis on the role of the RNP proteins The multiple functions of H/ACA RNPs appear to be reflected in the complex phenotype of dyskeratosis congenita

267 citations


Journal ArticleDOI
TL;DR: The striking correlation between perturbation of nucleolar function, elevated levels of p53, and induction of cell suicide supports the view that the nucleolus is a stress sensor that regulates p53 activity.

248 citations


Journal ArticleDOI
TL;DR: Findings reinforce the growing realization that nucleoli orchestrate the chain of events the celluses to properly respond to stress signals, and show stress-induced release of nucleolar proteins to carry out other regulatory functions.
Abstract: All organisms sense and respond to conditions that stress their homeostatic mechanisms. Here we review current studies showing that the nucleolus, long regarded as a mere ribosome producing factory, plays a key role in monitoring and responding to cellular stress. After exposure to extra- or intracellular stress, cells rapidly down-regulate the synthesis of ribosomal RNA. Impairment of nucleolar function in response to stress is accompanied by perturbation of nucleolar structure, cell cycle arrest and stabilization of p53. The nucleolar target for down-regulation of rDNA transcription is TIF-IA, an essential transcription factor that modulates the activity of RNA polymerase I (Pol I). Upon stress, TIF-IA is phosphorylated by c-Jun N-terminal kinase 2 (JNK2). Phosphorylation prevents TIF-IA from interaction with Pol I, thereby impairing transcription complex formation and rRNA synthesis. Furthermore, stress-induced inactivation of TIF-IA is accompanied by translocation of TIF-IA from the nucleolus to the nucleoplasm. These findings, together with other data showing stress-induced release of nucleolar proteins to carry out other regulatory functions, reinforce the growing realization that nucleoli orchestrate the chain of events the cell uses to properly respond to stress signals.

232 citations


Journal ArticleDOI
TL;DR: The data identify TIF-IA as a downstream target of the JNK pathway and suggest a critical role of JNK2 to protect rRNA synthesis against the harmful consequences of cellular stress.
Abstract: Cells respond to a variety of extracellular and intracellular forms of stress by down-regulating rRNA synthesis. We have investigated the mechanism underlying stress-dependent inhibition of RNA polymerase I (Pol I) transcription and show that the Pol I-specific transcription factor TIF-IA is inactivated upon stress. Inactivation is due to phosphorylation of TIF-IA by c-Jun N-terminal kinase (JNK) at a single threonine residue (Thr 200). Phosphorylation at Thr 200 impairs the interaction of TIF-IA with Pol I and the TBP-containing factor TIF-IB/SL1, thereby abrogating initiation complex formation. Moreover, TIF-IA is translocated from the nucleolus into the nucleoplasm. Substitution of Thr 200 by valine as well as knock-out of Jnk2 prevent inactivation and translocation of TIF-IA, leading to stress-resistance of Pol I transcription. Our data identify TIF-IA as a downstream target of the JNK pathway and suggest a critical role of JNK2 to protect rRNA synthesis against the harmful consequences of cellular stress.

229 citations


Journal ArticleDOI
TL;DR: The cell nucleolus is the subnuclear body in which ribosomal subunits are assembled, and it is also the location of several processes not related to ribosome biogenesis, including regulation of tumor suppressor and oncogene activities, signal recognition particle assembly, modification of small RNAs, control of aging, and modulating telomerase function.
Abstract: The cell nucleolus is the subnuclear body in which ribosomal subunits are assembled, and it is also the location of several processes not related to ribosome biogenesis. Recent studies have revealed that nucleolar components move about in a variety of ways. One class of movement is associated with ribosome assembly, which is a vectorial process originating at the sites of transcription in the border region between the fibrillar center and the dense fibrillar component. The nascent preribosomal particles move outwardly to become the granular components where further maturation takes place. These particles continue their travel through the nucleoplasm for eventual export to the cytoplasm to become functional ribosomes. In a second kind of motion, many nucleolar components rapidly exchange with the nucleoplasm. Thirdly, nucleolar components engage in very complex movements when the nucleolus disassembles at the beginning of mitosis and then reassembles at the end of mitosis. Finally, many other cellular and viral macromolecules, which are not related to ribosome assembly, also pass through or are retained by the nucleolus. These are involved in nontraditional roles of the nucleolus, including regulation of tumor suppressor and oncogene activities, signal recognition particle assembly, modification of small RNAs, control of aging, and modulating telomerase function.

220 citations


Journal ArticleDOI
TL;DR: It is proposed that, during evolution, a third nucleolar compartment emerged at the transition between the anamniotes and the amniotes, following a substantial increase in size of the rDNA intergenic region.

219 citations


Journal ArticleDOI
TL;DR: By immunological precipitation of total cell extracts, it is shown that the 100-kDa protein antiserum cross-reacts with five proteins with molecular masses of 120 kDa, 100 k da, 95 k Da, 70 kDa and 60 kDa.
Abstract: A high-molecular-mass nucleolar protein (100-kDa protein) is associated with nascent pre-rRNA and pre-ribosomes in Chinese hamster ovary cells. We have prepared antiserum against the 100-kDa protein and we have used it to study the intracellular localization and the possible processing of this protein. Serologically related proteins were detected in the nucleolus and in ribosomes. Proteins of various subcellular fractions were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, transferred to nitrocellulose filters, reacted with serum and the protein-immunoglobulin complexes were revealed by 125I-labeled protein A. In the nucleolus, four proteins with molecular masses of 100 kDa, 95 kDa, 76 kDa and 70 kDa were thus visualized. In the ribosomes, two proteins (of 100 kDa and 76 kDa) gave a strong reaction while six others (of 70 kDa, 60 kDa, 50 kDa, 30 kDa, 21 kDa, 18 kDa) reacted slightly. By immunological precipitation of total cell extracts, we have shown that the 100-kDa protein antiserum cross-reacts with five proteins with molecular masses of 120 kDa, 100 kDa, 95 kDa, 70 kDa and 60 kDa. Specific degradation of the 100-kDa protein into similar peptides with molecular masses of 95 kDa, 76 kDa, 70 kDa, 60 kDa and 50 kDa can be achieved by incubation of isolated nucleoli or of purified 100-kDa protein in vitro. Cleavage of the protein is due to a thiol endoprotease which is tightly bound to the 100-kDa protein. Possible relations between the maturation of this preribosomal protein into ribosomal proteins and the processing of preribosomal RNA into mature ribosomal RNA are discussed.

178 citations


Journal ArticleDOI
TL;DR: The results suggest that extensive binding of UBF is responsible for formation and maintenance of the secondary constriction at active NORs and propose that UBF mediates recruitment of the pol I machinery to nucleoli independently of promoter elements.
Abstract: Human ribosomal genes (rDNA) are located in nucleolar organizer regions (NORs) on the short arms of acrocentric chromosomes. Metaphase NORs that were transcriptionally active in the previous cell cycle appear as prominent chromosomal features termed secondary constrictions that are achromatic in chromosome banding and positive in silver staining. The architectural RNA polymerase I (pol I) transcription factor UBF binds extensively across rDNA throughout the cell cycle. To determine if UBF binding underpins NOR structure, we integrated large arrays of heterologous UBF-binding sequences at ectopic sites on human chromosomes. These arrays efficiently recruit UBF even to sites outside the nucleolus and, during metaphase, form novel silver stainable secondary constrictions, termed pseudo-NORs, morphologically similar to NORs. We demonstrate for the first time that in addition to UBF the other components of the pol I machinery are found associated with sequences across the entire human rDNA repeat. Remarkably, a significant fraction of these same pol I factors are sequestered by pseudo-NORs independent of both transcription and nucleoli. Because of the heterologous nature of the sequence employed, we infer that sequestration is mediated primarily by protein–protein interactions with UBF. These results suggest that extensive binding of UBF is responsible for formation and maintenance of the secondary constriction at active NORs. Furthermore, we propose that UBF mediates recruitment of the pol I machinery to nucleoli independently of promoter elements.

Journal ArticleDOI
TL;DR: The results suggest that the biological role of PARP-1 andPARP-2 within the nucleolus relies on functional nucleolar transcription, without any obvious implication of either PARP on this major nucleolar process.
Abstract: The DNA damage-dependent poly(ADP-ribose) polymerases-1 and -2 (PARP-1 and PARP-2) are survival factors that share overlapping functions in the detection, signaling and repair of DNA strand breaks resulting from genotoxic lesions in mammalian cells. Here we show that PARP-1 and PARP-2 subnuclear distributions partially overlap, with both proteins accumulating within the nucleolus independently of each other. PARP-2 is enriched within the whole nucleolus and partially colocalizes with the nucleolar factor nucleophosmin/B23. We have identified a nuclear localization signal and a nucleolar localization signal within the N-terminal domain of PARP-2. PARP-2, like PARP-1, interacts with B23 through its N-terminal DNA binding domain. This association is constitutive and does not depend on either PARP activity or ribosomal transcription, but is prevented by mutation of the nucleolar localization signal of PARP-2. PARP-1 and PARP-2, together with B23, are delocalized from the nucleolus upon RNA polymerase I inhibition whereas the nucleolar accumulation of all three proteins is only moderately affected upon oxidative or alkylated DNA damage. Finally, we show that murine fibroblasts deficient in PARP-1 or PARP-2 are not affected in the transcription of ribosomal RNAs. Taken together, these results suggest that the biological role of PARP-1 and PARP-2 within the nucleolus relies on functional nucleolar transcription, without any obvious implication of either PARP on this major nucleolar process.

Journal ArticleDOI
TL;DR: Findings show that rRNA genes are a mosaic of canonical and (presumably nonfunctional) palindromic units that may be altered by factors associated with genomic instability and pathology.
Abstract: The standard model of eukaryotic ribosomal RNA (rRNA) genes involves tandem arrays with hundreds of units in clusters, the nucleolus organizer regions (NORs). A first genomic overview for human cells is reported here for these regions, which have never been sequenced in their totality, by using molecular combing. The rRNA-coding regions are examined by fluorescence on single molecules of DNA with two specific probes that cover their entire length. The standard organization assumed for rDNA units is a transcribed region followed by a nontranscribed spacer. While we confirmed this arrangement in many cases, unorthodox patterns were also observed in normal individuals, with one-third of the rDNA units rearranged to form apparently palindromic structures (noncanonical units) independent of the age of the donors. In cells from individuals with a deficiency in the WRN RecQ helicase (Werner syndrome), the proportion of palindromes increased to one-half. These findings, supported by Southern blot analyses, show that rRNA genes are a mosaic of canonical and (presumably nonfunctional) palindromic units that may be altered by factors associated with genomic instability and pathology.

Journal ArticleDOI
TL;DR: The results demonstrate that the prestress in the cytoskeleton is crucial in mediating stress propagation to the nucleolus, with implications for direct mechanical regulation of nuclear activities and functions.

Journal ArticleDOI
TL;DR: This work identifies a novel cellular mechanism for regulating NF-κB-driven transcription and apoptosis, involving the nucleolar sequestration of a key NF-γB subunit and identifies an N-terminal motif of RelA that is essential for the nucleoli localization of the protein.
Abstract: The molecular mechanisms that regulate nuclear NF-κB to determine whether the stimulation of this pathway has a pro- or antiapoptotic effect on cells have yet to be fully defined. Nuclear compartmentalization is increasingly recognized as an important mechanism for regulating the activity of transcription-related proteins and modulating cell growth and death. We have investigated whether such compartmentalization serves as a mechanism for regulating NF-κB transcriptional activity. We demonstrate that the RelA component of NF-κB is sequestered in the nucleolus in response to the proapoptotic NF-κB stimuli aspirin, serum withdrawal, and UV-C radiation. In contrast, RelA is excluded from the nucleolus in response to the cytokines tumor necrosis factor and TRAIL. We identify an N-terminal motif of RelA that is essential for the nucleolar localization of the protein and show that deleting this motif inhibits the translocation of RelA from the nucleoplasm to the nucleolus. We demonstrate that the nucleolar accumulation of RelA is paralleled by a decrease in basal levels of NF-κB transcriptional activity and by apoptosis. Furthermore, we show that the retention of RelA in the nucleoplasm inhibits this decrease in NF-κB-driven transcription and blocks apoptosis induced by aspirin and UV-C radiation. This work identifies a novel cellular mechanism for regulating NF-κB-driven transcription and apoptosis, involving the nucleolar sequestration of a key NF-κB subunit. These data contribute to the understanding of the complexities of NF-κB function and have considerable relevance to cancer prevention and therapy.

Journal ArticleDOI
TL;DR: It is suggested that Arf's p53-independent effects on gene expression and tumor suppression might depend on Arf-induced sumoylation.
Abstract: The mouse p19(Arf) protein has both p53-dependent and p53-independent tumor-suppressive activities. Arf triggers sumoylation of many cellular proteins, including Mdm2 and nucleophosmin (NPM/B23), with which p19(Arf) physically interacts in vivo, and this occurs equally well in cells expressing or lacking functional p53. In an Arf-null NIH 3T3 cell derivative (MT-Arf cells) engineered to reexpress an Arf transgene driven by a zinc-inducible metallothionein promoter, sumoylation of endogenous Mdm2 and NPM proteins was initiated as p19(Arf) was induced and was observed before p53-dependent cell cycle arrest. Predominately nucleoplasmic molecules visualized by immunofluorescence with antibodies to small ubiquitin-like modifier (SUMO) 1 localized to nucleoli as p19(Arf) accumulated there. Two Arf mutants, one of which binds to Mdm2 and NPM but is excluded from nucleoli and the other of which enters nucleoli but is handicapped in binding to Mdm2 and NPM, were defective in inducing sumoylation of these two target proteins and did not localize bulk sumoylated molecules to nucleoli. The CELO adenovirus protein, Gam1, which inhibits the SUMO activating enzyme (E1) and leads to down-regulation of the SUMO conjugating enzyme (E2/Ubc9), had no overt effect on the ability of p19(Arf) to activate p53 or the p53-responsive genes encoding Mdm2 and p21(Cip1), despite the fact that Arf-induced sumoylation of Mdm2 was blocked. Reduction of Ubc9 levels with short hairpin RNAs rendered similar results. We suggest that Arf's p53-independent effects on gene expression and tumor suppression might depend on Arf-induced sumoylation.

Journal ArticleDOI
18 Aug 2005-Oncogene
TL;DR: These studies provide first line of evidence showing that SUMO-3 is essential for PML localization and offer novel insight into the pathobiochemistry of APL.
Abstract: The PML gene of acute promyelocytic leukemia (APL) encodes a cell-growth and tumor suppressor. PML localizes to discrete nuclear bodies (NBs) that are disrupted in APL cells, resulting from a reciprocal chromosome translocation t (15;17). Here we show that the nuclear localization of PML is also regulated by SUMO-3, one of the three recently identified SUMO isoforms in human cells. SUMO-3 bears similar subcellular distribution to those of SUMO-1 and -2 in the interphase nuclear body, which is colocalized with PML protein. However, both SUMO-2 and -3 are also localized to nucleoli, a region lacking SUMO-1. Immunoprecipitated PML protein bears SUMO-3 moiety in a covalently modified form, supporting the notion that PML is conjugated by SUMO-3. To determine the functional relevance of SUMO-3 conjugation on PML molecular dynamics, we suppressed SUMO-3 protein expression using a siRNA-mediated approach. Depletion of SUMO-3 markedly reduced the number of PML-containing NBa and their integrity, which is rescued by exogenous expression of SUMO-3 but not SUMO-1 or SUMO-2. The specific requirement of SUMO-3 for PML nuclear localization is validated by expression of SUMO-3 conjugation defective mutant. Moreover, we demonstrate that oligomerization of SUMO-3 is required for PML retention in the nucleus. Taken together, our studies provide first line of evidence showing that SUMO-3 is essential for PML localization and offer novel insight into the pathobiochemistry of APL.

Journal ArticleDOI
TL;DR: The results establish proteasomal proteolysis as an intrinsic function of the cell nucleus as well as signature proteins of subnuclear domains, including ubiquitin, nucleoplasmic proteasomes and RNA polymerase II.
Abstract: The ubiquitin proteasome system plays a fundamental role in the regulation of cellular processes by degradation of endogenous proteins. Proteasomes are localized in both, the cytoplasm and the cell nucleus, however, little is known about nuclear proteolysis. Here, fluorogenic precursor substrates enabled detection of proteasomal activity in nucleoplasmic cell fractions (turnover 0.0541 μM/minute) and nuclei of living cells (turnover 0.0472 μM/minute). By contrast, cell fractions of nucleoli or nuclear envelopes did not contain proteasomal activity. Microinjection of ectopic fluorogenic protein DQ-ovalbumin revealed that proteasomal protein degradation occurs in distinct nucleoplasmic foci, which partially overlap with signature proteins of subnuclear domains, such as splicing speckles or promyelocytic leukemia bodies, ubiquitin, nucleoplasmic proteasomes and RNA polymerase II. Our results establish proteasomal proteolysis as an intrinsic function of the cell nucleus.

Journal ArticleDOI
TL;DR: It is demonstrated that M-phase phosphoprotein 6 (MPP6), a protein reported previously to co-purify with the TAP-tagged human exosome, accumulates in the nucleoli of HEp-2 cells and associates with a subset of nuclear exosomes as evidenced by co-immunoprecipitation and biochemical fractionation experiments.
Abstract: The exosome is a complex of 3 0 !5 0 exoribonucleases which is involved in many RNA metabolic processes To regulate these functions distinct proteins are believed to recruit the exosome to specific substrate RNAs Here, we demonstrate that M-phase phosphoprotein 6 (MPP6), a protein reported previously to co-purify with the TAP-tagged human exosome, accumulates in the nucleoli of HEp-2 cells and associates with a subset of nuclear exosomes as evidenced by co-immunoprecipitation and biochemical fractionation experiments In agreement with its nucleolar accumulation, siRNA-mediated knock-down experiments revealed that MPP6 is involved in the generation of the 3 0 end of the 58S rRNA The accumulation of the same processing intermediates after reducing the levels of either MPP6 or exosome components strongly suggests that MPP6 is required for the recruitment of the exosome to the pre-rRNA Interestingly, MPP6 appeared to display RNA-binding activity in vitro with a preference for pyrimidine-rich sequences, and to bind to the ITS2 element of prerRNAs Our data indicate that MPP6 is a nucleolusspecific exosome co-factor required for its role in the maturation of 58S rRNA

Journal ArticleDOI
TL;DR: Differences in nuclear/nucleolar localization properties of N from other members of coronavirus family suggest a unique function for N, which may play an important role in the pathogenesis of SARS.

Journal ArticleDOI
TL;DR: In this article, electron spectroscopic imaging studies of the nitrogen and phosphorus distribution in the nucleolar granular component revealed regions that are very rich in protein and yet devoid of nucleic acid.
Abstract: Nucleostemin is a p53-interactive cell cycle progression factor that shuttles between the nucleolus and nucleoplasm, but it has no known involvement in ribosome synthesis. We found the dynamic properties of nucleostemin differed strikingly from fibrillarin (a protein directly involved in rRNA processing) both in response to rRNA transcription inhibition and in the schedule of reentry into daughter nuclei and the nucleolus during late telophase/early G1. Furthermore, nucleostemin was excluded from the nucleolar domains in which ribosomes are born—the fibrillar centers and dense fibrillar component. Instead it was concentrated in rRNA-deficient sites within the nucleolar granular component. This finding suggests that the nucleolus may be more subcompartmentalized than previously thought. In support of this concept, electron spectroscopic imaging studies of the nitrogen and phosphorus distribution in the nucleolar granular component revealed regions that are very rich in protein and yet devoid of nucleic acid. Together, these results suggest that the ultrastructural texture of the nucleolar granular component represents not only ribosomal particles but also RNA-free zones populated by proteins or protein complexes that likely serve other functions.

Journal ArticleDOI
TL;DR: Protein B23/nucleophosmin is a multifunctional protein that plays roles in ribosome biogenesis, control of centrosome duplication, and regulation of p53 expression, and the complementary DNA for a highly acidic protein, nucleoplasmin 3 (NPM3), was found in multiple positive clones.

Journal ArticleDOI
TL;DR: How historical measurements of the nucleolus are being translated into contemporary studies of nucleolar dysfunction in human cancer is discussed.
Abstract: While the nucleolus was first observed over two hundred years ago, its role in human cancers is only now being appreciated. Long thought to be a static, ribosome-producing, subnuclear organelle, recent investigations have shown a more dynamic and adaptable side of the nucleolus. Containing not only proteins for the production of ribosomes but also newfound nucleolar oncogenes and tumor suppressors, mechanistic links between the nucleolus and cancer are now more evident. In this regard, much of the work from the past decade has focused on the ability of these proteins to promote and suppress tumorigenesis from the nucleolus. In this review, we will discuss how historical measurements of the nucleolus are being translated into contemporary studies of nucleolar dysfunction in human cancer.

Journal ArticleDOI
TL;DR: The results suggest that the subnuclear localization of AtMBD is not solely dependent on CpG methylation; DDM1 may facilitate localization ofAtMBDs at specific nuclear domains.
Abstract: Methyl-CpG binding domain (MBD) proteins in Arabidopsis thaliana bind in vitro methylated CpG sites. Here, we aimed to characterize the binding properties of AtMBDs to chromatin in Arabidopsis nuclei. By expressing in wild-type cells AtMBDs fused to green fluorescent protein (GFP), we showed that AtMBD7 was evenly distributed at all chromocenters, whereas AtMBD5 and 6 showed preference for two perinucleolar chromocenters adjacent to nucleolar organizing regions. AtMBD2, previously shown to be incapable of binding in vitro–methylated CpG, was dispersed within the nucleus, excluding chromocenters and the nucleolus. Recruitment of AtMBD5, 6, and 7 to chromocenters was disrupted in ddm1 and met1 mutant cells, where a significant reduction in cytosine methylation occurs. In these mutant cells, however, AtMBD2 accumulated at chromocenters. No effect on localization was observed in the chromomethylase3 mutant showing reduced CpNpG methylation or in kyp-2 displaying a reduction in Lys 9 histone H3 methylation. Transient expression of DDM1 fused to GFP showed that DDM1 shares common sites with AtMBD proteins. Glutathione S-transferase pull-down assays demonstrated that AtMBDs bind DDM1; the MBD motif was sufficient for this interaction. Our results suggest that the subnuclear localization of AtMBD is not solely dependent on CpG methylation; DDM1 may facilitate localization of AtMBDs at specific nuclear domains.

Journal ArticleDOI
TL;DR: Findings support the concept of a direct action of steroid/thyroid hormones on mitochondrial functions by way of their cognate receptors and also suggest a direct involvement of ERalpha in nucleolar-related processes.

Journal ArticleDOI
TL;DR: Data shown here provide the first evidence that cells have evolved a mechanism to regulate molecular networks by reversibly switching proteins between a mobile and static state.
Abstract: Cellular pathways relay information through dynamic protein interactions. We have assessed the kinetic properties of the murine double minute protein (MDM2) and von Hippel-Lindau (VHL) ubiquitin ligases in living cells under physiological conditions that alter the stability of their respective p53 and hypoxia-inducible factor substrates. Photobleaching experiments reveal that MDM2 and VHL are highly mobile proteins in settings where their substrates are efficiently degraded. The nucleolar architecture converts MDM2 and VHL to a static state in response to regulatory cues that are associated with substrate stability. After signal termination, the nucleolus is able to rapidly release these proteins from static detention, thereby restoring their high mobility profiles. A protein surface region of VHL's β-sheet domain was identified as a discrete [H+]-responsive nucleolar detention signal that targets the VHL/Cullin-2 ubiquitin ligase complex to nucleoli in response to physiological fluctuations in environmental pH. Data shown here provide the first evidence that cells have evolved a mechanism to regulate molecular networks by reversibly switching proteins between a mobile and static state.

Journal ArticleDOI
TL;DR: The experiments demonstrate that actin filament-destabilizing drugs trigger the nuclear accumulation of hsc70s in unstressed and heat-shocked cells recovering from stress and propose that during recovery from stress hSc70s are released from nuclear and nucleolar anchors, which is a prerequisite to restore shuttling.
Abstract: Heat shock proteins of the hsp/hsc70 family are essential chaperones, implicated in the stress response, aging, and a growing number of human diseases. At the molecular level, hsc70s are required for the proper folding and intracellular targeting of polypeptides as well as the regulation of apoptosis. Cytoplasmic members of the hsp/hsc70 family are believed to shuttle between nuclei and cytoplasm; they are found in both compartments of unstressed cells. Our experiments demonstrate that actin filament-destabilizing drugs trigger the nuclear accumulation of hsc70s in unstressed and heat-shocked cells recovering from stress. Using human-mouse heterokaryons, we show that stress inhibits shuttling and sequesters the chaperone in nuclei. The inhibition of hsc70 shuttling upon heat shock is only transient, and transport is reestablished when cells recover from stress. Hsc70 shuttling is controlled by hsc70 retention in the nucleus, a process that is mediated by two distinct mechanisms, ATP-sensitive binding of hsc70s to chaperone substrates and, furthermore, the association with nucleoli. The nucleolar protein fibrillarin and ribosomal protein rpS6 were identified as components that show an increased association with hsc70s in the nucleus upon stress exposure. Together, our data suggest that stress abolishes the exit of hsc70s from the nucleus to the cytoplasm, thereby limiting their function to the nuclear compartment. We propose that during recovery from stress hsc70s are released from nuclear and nucleolar anchors, which is a prerequisite to restore shuttling.

Journal ArticleDOI
TL;DR: In this paper, confocal microscopy of N protein localization in Vero cells infected with the severe acute respiratory syndrome coronavirus (SARS)-CoV or transfected with the SARS-CoV N gene failed to show the presence of N in the nucleoplasm or nucleolus.
Abstract: The nucleocapsid (N) protein of several members within the order Nidovirales localizes to the nucleolus during infection and after transfection of cells with N genes. However, confocal microscopy of N protein localization in Vero cells infected with the severe acute respiratory syndrome coronavirus (SARS-CoV) or transfected with the SARS-CoV N gene failed to show the presence of N in the nucleoplasm or nucleolus. Amino acids 369 to 389, which contain putative nuclear localization signal (NLS) and nucleolar localization signal motifs, failed to restore nuclear localization to an NLS-minus mutant Rev protein. These data indicate that nuclear localization is not a conserved property among all nidoviruses.

Journal ArticleDOI
TL;DR: The recruitment of the nucleolar processing proteins in the nucleolus of living cells at the time of nucleus formation is investigated and the dynamics of these interactions suggests that PNBs are preassembly platforms for rRNA processing complexes.
Abstract: Reorganization of the nuclear machinery after mitosis is a fundamental but poorly understood process. Here, we investigate the recruitment of the nucleolar processing proteins in the nucleolus of living cells at the time of nucleus formation. We question the role of the prenucleolar bodies (PNBs), during migration of the processing proteins from the chromosome periphery to sites of rDNA transcription. Surprisingly, early and late processing proteins pass through the same PNBs as demonstrated by rapid two-color four-dimensional imaging and quantification, whereas a different order of processing protein recruitment into nucleoli is supported by differential sorting. Protein interactions along the recruitment pathway were investigated using a promising time-lapse analysis of fluorescence resonance energy transfer. For the first time, it was possible to detect in living cells the interactions between proteins of the same rRNA processing machinery in nucleoli. Interestingly interactions between such proteins also occur in PNBs but not at the chromosome periphery. The dynamics of these interactions suggests that PNBs are preassembly platforms for rRNA processing complexes.

Journal ArticleDOI
TL;DR: Results indicated that Mi-2β and RFP, known to be involved in transcriptional repression in the nucleus, co-localize with MCRS1 in the nucleolus and appear to activate the rRNA transcription.