scispace - formally typeset
Search or ask a question

Showing papers on "Orthogonal frequency-division multiplexing published in 2002"


Journal ArticleDOI
TL;DR: This article surveys frequency domain equalization (FDE) applied to single-carrier (SC) modulation solutions and discusses similarities and differences of SC and OFDM systems and coexistence possibilities, and presents examples of SC-FDE performance capabilities.
Abstract: Broadband wireless access systems deployed in residential and business environments are likely to face hostile radio propagation environments, with multipath delay spread extending over tens or hundreds of bit intervals. Orthogonal frequency-division multiplex (OFDM) is a recognized multicarrier solution to combat the effects of such multipath conditions. This article surveys frequency domain equalization (FDE) applied to single-carrier (SC) modulation solutions. SC radio modems with frequency domain equalization have similar performance, efficiency, and low signal processing complexity advantages as OFDM, and in addition are less sensitive than OFDM to RF impairments such as power amplifier nonlinearities. We discuss similarities and differences of SC and OFDM systems and coexistence possibilities, and present examples of SC-FDE performance capabilities.

2,475 citations


Journal ArticleDOI
TL;DR: This work has implemented a decision feedback equalizer for all sub-channels followed by periodic block-type pilots and compared the performances of all schemes by measuring bit error rates with 16QAM, QPSK, DQPSK and BPSK as modulation schemes, and multipath Rayleigh fading and AR based fading channels as channel models.
Abstract: Channel estimation techniques for OFDM systems based on a pilot arrangement are investigated. Channel estimation based on a comb type pilot arrangement is studied through different algorithms for both estimating the channel at pilot frequencies and interpolating the channel. Channel estimation at pilot frequencies is based on LS and LMS methods while channel interpolation is done using linear interpolation, second order interpolation, low-pass interpolation, spline cubic interpolation, and time domain interpolation. Time-domain interpolation is obtained by passing to the time domain by means of IDFT (inverse discrete Fourier transform), zero padding and going back to the frequency domain by DFT (discrete Fourier transform). In addition, channel estimation based on a block type pilot arrangement is performed by sending pilots in every sub-channel and using this estimation for a specific number of following symbols. We have also implemented a decision feedback equalizer for all sub-channels followed by periodic block-type pilots. We have compared the performances of all schemes by measuring bit error rates with 16QAM, QPSK, DQPSK and BPSK as modulation schemes, and multipath Rayleigh fading and AR based fading channels as channel models.

1,551 citations


Journal ArticleDOI
TL;DR: A discrete-time analysis of the orthogonal frequency division multiplex/offset QAM (OFDM/OQAM) multicarrier modulation technique, leading to a modulated transmultiplexer, is presented.
Abstract: A discrete-time analysis of the orthogonal frequency division multiplex/offset QAM (OFDM/OQAM) multicarrier modulation technique, leading to a modulated transmultiplexer, is presented. The conditions of discrete orthogonality are established with respect to the polyphase components of the OFDM/OQAM prototype filter, which is assumed to be symmetrical and with arbitrary length. Fast implementation schemes of the OFDM/OQAM modulator and demodulator are provided, which are based on the inverse fast Fourier transform. Non-orthogonal prototypes create intersymbol and interchannel interferences (ISI and ICI) that, in the case of a distortion-free transmission, are expressed by a closed-form expression. A large set of design examples is presented for OFDM/OQAM systems with the number of subcarriers going from four up to 2048, which also allows a comparison between different approaches to get well-localized prototypes.

1,020 citations


Journal ArticleDOI
TL;DR: It is found that, in the MIMO case, unlike the single-input single-output (SISO) case, delay spread channels may provide advantages over flat fading channels not only in terms of outage capacity but also in termsof ergodic capacity.
Abstract: This paper deals with the capacity behavior of wireless orthogonal frequency-division multiplexing (OFDM)-based spatial multiplexing systems in broad-band fading environments for the case where the channel is unknown at the transmitter and perfectly known at the receiver Introducing a physically motivated multiple-input multiple-output (MIMO) broad-band fading channel model, we study the influence of physical parameters such as the amount of delay spread, cluster angle spread, and total angle spread, and system parameters such as the number of antennas and antenna spacing on ergodic capacity and outage capacity We find that, in the MIMO case, unlike the single-input single-output (SISO) case, delay spread channels may provide advantages over flat fading channels not only in terms of outage capacity but also in terms of ergodic capacity Therefore, MIMO delay spread channels will in general provide both higher diversity gain and higher multiplexing gain than MIMO flat fading channels

1,004 citations


Journal ArticleDOI
TL;DR: Two novel equalizers are developed for ZP-OFDM to tradeoff performance with implementation complexity andSimulations tailored to the realistic context of the standard for wireless local area network HIPERLAN/2 illustrate the pertinent tradeoffs.
Abstract: Zero padding (ZP) of multicarrier transmissions has been proposed as an appealing alternative to the traditional cyclic prefix (CP) orthogonal frequency-division multiplexing (OFDM) to ensure symbol recovery regardless of the channel zero locations. In this paper, both systems are studied to delineate their relative merits in wireless systems where channel knowledge is not available at the transmitter. Two novel equalizers are developed for ZP-OFDM to tradeoff performance with implementation complexity. Both CP-OFDM and ZP-OFDM are then compared in terms of transmitter nonlinearities and required power backoff. Next, both systems are tested in terms of channel estimation and tracking capabilities. Simulations tailored to the realistic context of the standard for wireless local area network HIPERLAN/2 illustrate the pertinent tradeoffs.

822 citations


Journal ArticleDOI
TL;DR: Two techniques to improve the performance and reduce the complexity of channel parameter estimation are presented: optimum training-sequence design and simplified channel estimation.
Abstract: Multiple transmit-and-receive antennas can be used in orthogonal frequency division multiplexing (OFDM) systems to improve communication quality and capacity. In this paper, we present two techniques to improve the performance and reduce the complexity of channel parameter estimation: optimum training-sequence design and simplified channel estimation. The optimal training sequences not only simplify the initial channel estimation, but also attain the best estimation performance. The simplified channel estimation significantly reduces the complexity of the channel estimation at the expense of a negligible performance degradation. The effectiveness of the new techniques is demonstrated through the simulation of an OFDM system with two-transmit and two-receive antennas. The space-time coding with 240 information bits per codeword is used for transmit diversity. From the simulation, the required signal-to-noise ratio is only about 9 dB for a 10% word error rate for a channel with the typical urban- or hilly-terrain delay profile and a 40-Hz Doppler frequency.

731 citations


Journal ArticleDOI
TL;DR: This article describes a multiple-input multiple-output OFDM wireless communication system, lab test results, and field test results obtained in San Jose, California, to establish the performance of MIMO communication systems.
Abstract: Increasing demand for high-performance 4G broadband wireless is enabled by the use of multiple antennas at both base station and subscriber ends. Multiple antenna technologies enable high capacities suited for Internet and multimedia services, and also dramatically increase range and reliability. In this article we describe a multiple-input multiple-output OFDM wireless communication system, lab test results, and field test results obtained in San Jose, California. These are the first MIMO system field tests to establish the performance of MIMO communication systems. Increased capacity, coverage, and reliability are clearly evident from the test results presented in this article.

711 citations


Journal ArticleDOI
TL;DR: The channel capacity of the oversampled and clipped OFDM signals over the additive white Gaussian noise and ideally interleaved Rayleigh fading channels is discussed and it is shown that the SNR penalty due to the clipping can be considerably alleviated by using optimal coding and reducing the information data rate.
Abstract: We analyze the performance of the clipped orthogonal frequency division multiplexing (OFDM) system in terms of peak power reduction capability and degradation of channel capacity. The clipping is performed on the baseband OFDM signals with and without oversampling, followed by the ideal low-pass filter. First, the effect of the envelope clipping on the peak-to-average power ratio (PAPR) and the instantaneous power of the band-limited OFDM signal is studied. We then discuss the channel capacity of the oversampled and clipped OFDM signals over the additive white Gaussian noise and ideally interleaved Rayleigh fading channels. The capacity is calculated based on the assumption that the distortion terms caused by the clipping are Gaussian. It is shown that the SNR penalty due to the clipping can be considerably alleviated by using optimal coding and reducing the information data rate. The results are justified by the simulation results using near optimal turbo codes.

684 citations


Journal ArticleDOI
TL;DR: This work overviews the work of the one of the IEEE 802.16 standard subcommittee projects that deals with a BWA solution based on OFDM access (OFDMA) aiming at the most challenging NLOS scenarios.
Abstract: Broadband wireless access is the most challenging segment of the wireless revolution since it has to demonstrate a viable alternative to the cable modem and DSL technologies that are strongly entrenched in the last mile access environment. The Analysis, Research, and Consultancy (ARC) Group forecasts that the fixed wireless deployments in both homes and businesses will reach almost 28 million by 2005, with North America and Western Europe accounting for 24 percent and 27 percent of these, respectively. Whether the promise of BWA will materialize depends on its appeal to telecom operators from the perspective of deployment economics, where the critical factor is the ease of installation of broadband wireless subscriber units. This ultimately leads to nonprofessional installation of integrated all-indoor BWSUs. Consequently the physical layer (PHY) has to mitigate the very tough impairments that characterize these non-line-of-sight environments. In this context we overview the work of the one of the IEEE 802.16 standard subcommittee projects that deals with a BWA solution based on OFDM access (OFDMA) aiming at the most challenging NLOS scenarios.

551 citations


Journal ArticleDOI
TL;DR: Orthogonal frequency division multiplexing for MIMO channels (MIMO-OFDM) is considered for wideband transmission to mitigate intersymbol interference and enhance system capacity.
Abstract: Multiple transmit and receive antennas can be used to form multiple-input multiple-output (MIMO) channels to increase the capacity by a factor of the minimum number of transmit and receive antennas. In this paper, orthogonal frequency division multiplexing (OFDM) for MIMO channels (MIMO-OFDM) is considered for wideband transmission to mitigate intersymbol interference and enhance system capacity. The MIMO-OFDM system uses two independent space-time codes for two sets of two transmit antennas. At the receiver, the independent space-time codes are decoded using prewhitening, followed by minimum-Euclidean-distance decoding based on successive interference cancellation. Computer simulation shows that for four-input and four-output systems transmitting data at 4 Mb/s over a 1.25 MHz channel, the required signal-to-noise ratios (SNRs) for 10% and 1% word error rates (WER) are 10.5 dB and 13.8 dB, respectively, when each codeword contains 500 information bits and the channel's Doppler frequency is 40 Hz (corresponding normalized frequency: 0.9%). Increasing the number of the receive antennas improves the system performance. When the number or receive antennas is increased from four to eight, the required SNRs for 10% and 1% WER are reduced to 4 dB and 6 dB, respectively. Therefore, MIMO-OFDM is a promising technique for highly spectrally efficient wideband transmission.

546 citations


Journal ArticleDOI
TL;DR: An overview of the challenges and promises of link adaptation in future broadband wireless networks is given and guidelines to help in the design of robust, complexity/cost-effective algorithms for these future wireless networks are suggested.
Abstract: Link adaptation techniques, where the modulation, coding rate, and/or other signal transmission parameters are dynamically adapted to the changing channel conditions, have emerged as powerful tools for increasing the data rate and spectral efficiency of wireless data-centric networks. While there has been significant progress on understanding the theoretical aspects of time adaptation in LA protocols, new challenges surface when dynamic transmission techniques are employed in broadband wireless networks with multiple signaling dimensions. Those additional dimensions are mainly frequency, especially in multicarrier systems, and space in multiple-antenna systems, particularly multiarray multiple-input multiple-output communication systems. We give an overview of the challenges and promises of link adaptation in future broadband wireless networks. We suggest guidelines to help in the design of robust, complexity/cost-effective algorithms for these future wireless networks.

Journal ArticleDOI
TL;DR: This paper develops a model for multicarrier transmission over time-varying channels and focuses particularly on multiple-input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM), and proposes a time-domain approach to channel estimation.
Abstract: In this paper, we examine multicarrier transmission over time-varying channels. We first develop a model for such a transmission scheme and focus particularly on multiple-input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM). Using this method, we analyze the impact of time variation within a transmission block (time variation could arise both from Doppler spread of the channel and from synchronization errors). To mitigate the effects of such time variations, we propose a time-domain approach. We design ICI-mitigating block linear filters, and we examine how they are modified in the context of space-time block-coded transmissions. Our approach reduces to the familiar single-tap frequency-domain equalizer when the channel is block time invariant. Channel estimation in rapidly time-varying scenarios becomes critical, and we propose a scheme for estimating channel parameters varying within a transmission block. Along with the channel estimation scheme, we also examine the issue of pilot tone placement and show that in time-varying channels, it may be better to group pilot tones together into clumps that are equispaced onto the FFT grid; this placement technique is in contrast to the common wisdom for time-invariant channels. Finally, we provide numerical results illustrating the performance of these schemes, both for uncoded and space-time block-coded systems.

Patent
15 Oct 2002
TL;DR: In this paper, a method and apparatus for reducing the number of pilot symbols within a MIMO-OFDM communication system, and for improving channel estimation within such a system, is provided.
Abstract: A method and apparatus are provided for reducing the number of pilot symbols within a MIMO-OFDM communication system, and for improving channel estimation within such a system. For each transmitting antenna in an OFDM transmitter, pilot symbols are encoded so as to be unique to the transmitting antenna. The encoded pilot symbols are then inserted into an OFDM frame to form a diamond lattice, the diamond lattices for the different transmitting antennae using the same frequencies but being offset from each other by a single symbol in the time domain. At the OFDM receiver, a channel response is estimated for a symbol central to each diamond of the diamond lattice using a two-dimensional interpolation. The estimated channel responses are smoothed in the frequency domain. The channel responses of remaining symbols are then estimated by interpolation in the frequency domain.

Journal ArticleDOI
TL;DR: Novel space-time-frequency coding for multi-antenna orthogonal frequency-division multiplexing (OFDM) transmissions over frequency-selective Rayleigh fading channels is proposed and shown to be capable of achieving maximum diversity and coding gains, while affording low-complexity decoding.
Abstract: This paper proposes novel space-time-frequency (STF) coding for multi-antenna orthogonal frequency-division multiplexing (OFDM) transmissions over frequency-selective Rayleigh fading channels. Incorporating subchannel grouping and choosing appropriate system parameters, we first convert our system into a set of group STF (GSTF) systems. This enables simplification of STF coding within each GSTF system. We derive design criteria for STF coding and exploit existing ST coding techniques to construct both STF block and trellis codes. The resulting codes are shown to be capable of achieving maximum diversity and coding gains, while affording low-complexity decoding. The performance merits of our design are confirmed by corroborating simulations and compared with existing alternatives.

Journal ArticleDOI
TL;DR: A new frequency-domain decision feedback equalizer for single carrier modulation, which makes use of a data block transmission format similar to that of the orthogonal frequency-division multiplexing with cyclic prefix, with the result that FD-DFE and OFDM have a similar computational complexity in signal processing.
Abstract: Most comparisons between single carrier and multicarrier modulations assume frequency-domain linear equalization of the channel. We propose a new frequency-domain decision feedback equalizer (FD-DFE) for single carrier modulation, which makes use of a data block transmission format similar to that of the orthogonal frequency-division multiplexing with cyclic prefix (OFDM). The scheme is a nonadaptive DFE where the feedforward part is implemented in the frequency domain, while feedback signal is generated by time-domain filtering. Through simulations in a HIPERLAN-2 scenario, we show that FD-DFE yields a capacity very close to that of OFDM. This result is also confirmed by analytical derivations for a particular case. Furthermore, when no channel loading is considered, FD-DFE performs closely to OFDM for the same averaged frame error rate in a coded transmission. Design methods of the FD-DFE are investigated and a reduced complexity technique is developed, with the result that FD-DFE and OFDM have a similar computational complexity in signal processing.

Journal ArticleDOI
TL;DR: Theoretical results show perfect agreement with those obtained by simulation and they can be used to derive the OFDM system performance, without the need to run extensive simulations.
Abstract: The orthogonal frequency-division multiplexing (OFDM) modulation format has been proposed in Europe as the standard for broadcasting both audio and television digital signals and for wide-band wireless communication systems (e.g., HIPERLAN II). The performance of the OFDM scheme is severely affected by the nonlinearity of the high-power amplifier at the transmitter end and by the phase noise of the oscillators. In this paper, we investigate the joint effects induced on the OFDM signal by the amplifier nonlinearity and by the phase noise. An accurate statistical description of each contribution to the signal distortion is provided. Theoretical results show perfect agreement with those obtained by simulation and they can be used to derive the OFDM system performance, without the need to run extensive simulations.

Journal ArticleDOI
TL;DR: Identifiability results are provided, showing that in the (theoretical) situation where channel zeros are located on subcarriers, the algorithm does not ensure uniqueness of the channel estimation, unless the full noise subspace is considered.
Abstract: This paper proposes a new blind channel estimation method for orthogonal frequency division multiplexing (OFDM) systems. The algorithm makes use of the redundancy introduced by the cyclic prefix to identify the channel based on a subspace approach. Thus, the proposed method does not require any modification of the transmitter and applies to most existing OFDM systems. Semi-blind procedures taking advantage of training data are also proposed. These can be training symbols or pilot tones, the latter being used for solving the intrinsic indetermination of blind channel estimation. Identifiability results are provided, showing that in the (theoretical) situation where channel zeros are located on subcarriers, the algorithm does not ensure uniqueness of the channel estimation, unless the full noise subspace is considered. Simulations comparing the proposed method with a decision-directed channel estimator finally illustrates the performance of the proposed algorithm.

Journal ArticleDOI
TL;DR: The problem of placing training symbols optimally for orthogonal frequency-division multiplexing (OFDM) and single-carrier systems is considered and the lower bound is maximized by a family of placement schemes called QPP-/spl alpha/, where QPP stands for quasi-periodic placement.
Abstract: The problem of placing training symbols optimally for orthogonal frequency-division multiplexing (OFDM) and single-carrier systems is considered. The channel is assumed to be quasi-static with a finite impulse response of length (L + 1) samples. Under the assumptions that neither the transmitter nor the receiver knows the channel, and that the receiver forms a minimum mean square error (MMSE) channel estimate based on training symbols only, training is optimized by maximizing a tight lower bound on the ergodic training-based independent and identically distributed (i.i.d.) capacity. For OFDM systems, it is shown that the lower bound is maximized by placing the known symbols periodically in frequency. For single-carrier systems, under the assumption that the training symbols are placed in clusters of length /spl alpha/ /spl ges/ (2L + 1), it is shown that the lower bound is maximized by a family of placement schemes called QPP-/spl alpha/, where QPP stands for quasi-periodic placement. These placement schemes are formed by grouping the known symbols into as many clusters as possible and then placing these clusters periodically in the packet. For both OFDM and single-carrier systems, the optimum energy tradeoff between training and data is also obtained.

Journal ArticleDOI
TL;DR: The proposed LDPC-based STC-OFDM system is a promising solution to highly efficient data transmission over selective-fading mobile wireless channels and proposes a novel turbo receiver employing a maximum a posteriori expectation-maximization demodulator and a soft LDPC decoder.
Abstract: We consider a space-time coded (STC) orthogonal frequency-division multiplexing (OFDM) system with multiple transmitter and receiver antennas over correlated frequency- and time-selective fading channels. It is shown that the product of the time-selectivity order and the frequency-selectivity order is a key parameter to characterize the outage capacity of the correlated fading channel. It is also observed that STCs with large effective lengths and ideal built-in interleavers are more effective in exploiting the natural diversity in multiple-antenna correlated fading channels. We then propose a low-density parity-check (LDPC)-code-based STC-OFDM system. Compared with the conventional space-time trellis code (STTC), the LDPC-based STC can significantly improve the system performance by exploiting both the spatial diversity and the selective-fading diversity in wireless channels. Compared with the previously proposed turbo-code-based STC scheme, LDPC-based STC exhibits lower receiver complexity and more flexible scalability. We also consider receiver design for LDPC-based STC-OFDM systems in unknown fast fading channels and propose a novel turbo receiver employing a maximum a posteriori expectation-maximization (MAP-EM) demodulator and a soft LDPC decoder, which can significantly reduce the error floor in fast fading channels with a modest computational complexity. With such a turbo receiver, the proposed LDPC-based STC-OFDM system is a promising solution to highly efficient data transmission over selective-fading mobile wireless channels.

Journal ArticleDOI
TL;DR: Redundant precoders with cyclic prefix and superimposed training sequences are designed for optimal channel estimation and guaranteed symbol detectability, regardless of the underlying frequency-selective FIR channels.
Abstract: The adoption of orthogonal frequency-division multiplexing by wireless local area networks and audio/video broadcasting standards testifies to the importance of recovering block precoded transmissions propagating through frequency-selective finite-impulse response (FIR) channels. Existing block transmission standards invoke bandwidth-consuming error control codes to mitigate channel fades, and training sequences to identify the FIR channels. To enable block-by-block receiver processing, we design redundant precoders with cyclic prefix and superimposed training sequences for optimal channel estimation and guaranteed symbol detectability, regardless of the underlying frequency-selective FIR channels. Numerical results are presented to access the performance of the designed training and precoding schemes.

Proceedings ArticleDOI
17 Nov 2002
TL;DR: The simulation results show that the proposed estimator is unbiased and has significantly smaller MSE than the current estimator, which is designed to avoid the ambiguity in timing offset estimation.
Abstract: We present a novel timing offset estimation method for orthogonal frequency division multiplexing(OFDM) systems. The proposed estimator is designed to avoid the ambiguity in timing offset estimation. The performance of proposed scheme is presented in terms of mean and mean-square error (MSE) sense. The simulation results show that the proposed estimator is unbiased and has significantly smaller MSE.

Book
01 Jan 2002
TL;DR: This book discusses the design of high speed transmission systems over unshielded twisted pair cables, and modulation techniques for wireless systems, as well as some of the applications of interference cancellation.
Abstract: Preface. Acknowledgements. Elements of signal theory. The Wiener filter and linear prediction. Adaptive transversal filters. Transmission media. Digital representation of waveforms. Modulation theory. Transmission over dispersive channels. Channel equilization and symbol detection. Orthogonal frequency division multiplexing. Spread spectrum systems. Channel codes. Trellis coded modulation. Precoding and coding techniques for dispersive channels. Synchronization. Self--training equalization. Applications of interference cancellation. Wired and wireless network technologies. Modulation techniques for wireless systems. Design of high speed transmission systems over unshielded twisted pair cables. Index.

Patent
24 Apr 2002
TL;DR: In this paper, the authors present an orthogonal frequency division multiplexing (OFDM) communication system for synchronizing data transmitted across a channel, where the number of transmitting and receiving antennas does not necessarily have to be the same.
Abstract: In a communication system, and in particular a wireless Orthogonal Frequency Division Multiplexing (OFDM) communication system, the present invention provides systems for synchronizing data transmitted across a channel. The present invention may be used in a Multi-Input, Multi-Output (MIMO) system in which the data is transmitted from any number of transmitting antennas and received by any number of receiving antennas. The number of transmitting and receiving antennas does not necessarily have to be the same. Circuitry is provided for synchronizing the data in both the time domain and frequency domain. Time synchronization involves coarse time synchronization and fine time synchronization. Frequency synchronization involves coarse frequency offset estimation, fine frequency offset estimation, and frequency offset correction.

Patent
08 Apr 2002
TL;DR: In this paper, an OFDM signal communication system which transmits OFDM signals over the same radio frequency from N transmitting antennas, has an inverse matrix computer for computing an N×N inverse matrix constituted by propagation coefficients for respective propagation paths.
Abstract: An OFDM signal communication system used in broadband mobile communication, achieves stable operation under severe frequency selective fading environments, giving high quality. The OFDM signal communication system which transmits OFDM signals over the same radio frequency from N transmitting antennas, has an inverse matrix computer for computing an N×N inverse matrix constituted by propagation coefficients for respective propagation paths between each of N transmitting antennas and each of N receiving antennas, and a subcarrier demodulator which separates the signals of the respective propagation paths, based on the obtained inverse matrix.

Proceedings ArticleDOI
10 Dec 2002
TL;DR: In this paper, the authors investigated the channel estimation techniques for OFDM systems based on comb type pilot arrangement through different algorithms for both estimating channel at pilot frequencies and interpolating the channel, and implemented a decision feedback equalizer for all sub-channels followed by periodic block-type pilots.
Abstract: The channel estimation techniques for OFDM systems based on pilot arrangement are investigated. The channel estimation based on comb type pilot arrangement is studied through different algorithms for both estimating channel at pilot frequencies and interpolating the channel. The estimation of channel at pilot frequencies is based on LS and LMS while the channel interpolation is done using linear interpolation, second order interpolation, low-pass interpolation, spline cubic interpolation, and time domain interpolation. Furthermore, the channel estimation based on block type pilot arrangement is performed by sending pilots at every sub-channel and using this estimation for a specific number of following symbols. We have also implemented a decision feedback equalizer for all sub-channels followed by periodic block-type pilots. We have compared the performances of all schemes by measuring bit error rate with 16QAM, QPSK and DQPSK as modulation schemes, and multipath Rayleigh fading and AR based fading channels as channel models.

Journal ArticleDOI
TL;DR: A new phase noise suppression (PNS) algorithm is proposed to efficiently eliminate the effect of phase noise on OFDM-based WLANs.
Abstract: Orthogonal frequency-division multiplexing (OFDM) has been specified by the IEEE 802.11a standard as the transmission technique for high-rate wireless local area networks (WLANs). The performance of an OFDM system, however, is heavily degraded by random Wiener phase noise, which causes both common phase error (CPE) and inter-carrier interference (ICI). To mitigate this problem, a new phase noise suppression (PNS) algorithm is proposed to efficiently eliminate the effect of phase noise on OFDM-based WLANs. Numerical results are presented to illustrate the effectiveness of the proposed algorithm.

Journal ArticleDOI
TL;DR: This work develops synchronization algorithms for both the downlink and the uplink of quasi-synchronous and asynchronous orthogonal frequency division multiple access systems and derives a closed-form variance expression for the carrier-offset estimator at high signal-to-noise ratio (SNR).
Abstract: We develop synchronization algorithms for both the downlink and the uplink of quasi-synchronous and asynchronous orthogonal frequency division multiple access systems. Unlike existing alternatives, the proposed time- and carrier-offset estimators do not require the transmission of known sequences and exhibit performance independent of the underlying channel zero locations. The only necessary assumption is that there are virtual subcarriers which are not occupied by any user. We derive a closed-form variance expression for the carrier-offset estimator at high signal-to-noise ratio (SNR), as a function of the number of active users and the SNR. We compare our method with alternative ones and validate our theoretical derivations with simulation results.

Journal ArticleDOI
TL;DR: This work relies on redundant linear precoding to develop a (semi-)blind channel estimation algorithm for space time (ST) orthogonal frequency division multiplexing (OFDM) transmissions with Alamouti's block code applied on each subcarrier and establishes that multichannel identifiability is guaranteed up to one or two scalar ambiguities.
Abstract: Space time coding has by now been well documented as an attractive means of achieving high data rate transmissions with diversity and coding gains, provided that the underlying propagation channels can be accounted for. We rely on redundant linear precoding to develop a (semi-)blind channel estimation algorithm for space time (ST) orthogonal frequency division multiplexing (OFDM) transmissions with Alamouti's (see IEEE J. Select. Areas Commun., vol.16, p.1451-58, Oct. 1998) block code applied on each subcarrier. We establish that multichannel identifiability is guaranteed up to one or two scalar ambiguities, regardless of the channel zero locations and the underlying signal constellations, when distinct or identical precoders are employed for even and odd indexed symbol blocks. With known pilots inserted either before or after precoding, we resolve the residual scalar ambiguities and show that distinct precoders require half the number of pilots than identical precoders to achieve the same channel estimation accuracy. Simulation results confirm our theoretical analysis and illustrate that the proposed semi-blind algorithm is capable of tracking slow channel variations and improving the overall system performance relative to competing differential ST alternatives.

Journal ArticleDOI
TL;DR: It is shown that the adaptive minimum mean square error (MMSE) multiuser detection (MUD) receivers are able to gather multipath energy and reject intersymbol and interchip interference for these channels to a much greater extent than RAKE receivers with 4 and 8 arms.
Abstract: We demonstrate the effectiveness of multiuser detection for an ultra-wideband (UWB) pulse based direct sequence spread spectrum system using code division multiple access. Extensive simulations were run using channel soundings of the 2-8 GHz band collected in a residential setting and characterized by a high level of multipath fragmentation. We show that the adaptive minimum mean square error (MMSE) multiuser detection (MUD) receivers are able to gather multipath energy and reject intersymbol and interchip interference for these channels to a much greater extent than RAKE receivers with 4 and 8 arms. We also demonstrate the adaptive MMSE is able to reject a narrowband IEEE 802.11a OFDM interferer, even for signal-to-interference ratio as severe as -30 dB. We show the adaptive MMSE exhibits only a 6 dB penalty relative to the single user case for the heavy multi-access interference (number of asynchronous users equal to spreading code length). The practical RAKE receivers were incapable of effectively rejecting either the strong narrowband interference or the heavily loaded wideband interference. Even more moderate levels of interference caused significant degradation in the performance of the practical RAKE receivers.

Journal ArticleDOI
TL;DR: It can be shown that OFDM-CDM outperforms conventional OFDM with respect to bit error rate (BER) performance and bandwidth efficiency.
Abstract: In this paper, orthogonal frequency-division multiplexing-code-division multiplexing (OFDM-CDM) is presented and investigated as alternative to conventional OFDM for high rate data transmission. An additional multipath diversity gain can be obtained with OFDM-CDM by spreading each data symbol in frequency and time. The optimum reliability information for the Viterbi (1979) decoder is derived for OFDM-CDM systems, and the tradeoff between spreading and channel coding in OFDM systems is presented. By using efficient interference cancellation or joint detection techniques, it can be shown that OFDM-CDM outperforms conventional OFDM with respect to bit error rate (BER) performance and bandwidth efficiency.