scispace - formally typeset
Search or ask a question

Showing papers on "Somatosensory system published in 2020"


Journal ArticleDOI
14 Oct 2020-Neuron
TL;DR: It is suggested that transcription factors induced early after peripheral nerve injury confer the cellular plasticity required for sensory neurons to transform into a regenerative state.

188 citations


Journal ArticleDOI
TL;DR: The authors showed that the ‘moment of perception’ is causally related to dendritic activity in subcortically projecting layer 5 pyramidal neurons that project to the higher-order thalamus, superior colliculus and striatum.
Abstract: The output of cortical columns is routed to different downstream targets via distinct pathways: cortico-cortical and cortico-subcortical. It is as yet unclear what roles these pathways play in perception, and which cellular and circuit mechanisms regulate their gating. We recently showed that activation of the apical dendrites of layer 5 (L5) pyramidal neurons correlates with the threshold for perception, but these neurons come in two classes that target either other cortical or subcortical areas. In the present study, we took advantage of transgenic mouse lines for these L5 subclasses to determine their relative contributions to the perceptual process. We found that the activation of apical dendrites in neurons of the somatosensory cortex, which project to subcortical regions, almost exclusively determined the detection of tactile stimuli in mice. Our results suggest that dendritic activation drives context-dependent interactions between cortex and subcortical regions, including the higher-order thalamus, superior colliculus and striatum, which are crucial for perception.

112 citations


Journal ArticleDOI
TL;DR: Two distinct heartbeat-related influences on conscious perception differentially related to early vs. late somatosensory processing are identified and proposed, which might reflect spontaneous shifts between interoception and exteroception or modulations of general attentional resources.
Abstract: Even though humans are mostly not aware of their heartbeats, several heartbeat-related effects have been reported to influence conscious perception. It is not clear whether these effects are distinct or related phenomena, or whether they are early sensory effects or late decisional processes. Combining electroencephalography and electrocardiography, along with signal detection theory analyses, we identify two distinct heartbeat-related influences on conscious perception differentially related to early vs. late somatosensory processing. First, an effect on early sensory processing was found for the heartbeat-evoked potential (HEP), a marker of cardiac interoception. The amplitude of the prestimulus HEP negatively correlated with localization and detection of somatosensory stimuli, reflecting a more conservative detection bias (criterion). Importantly, higher HEP amplitudes were followed by decreases in early (P50) as well as late (N140, P300) somatosensory-evoked potential (SEP) amplitudes. Second, stimulus timing along the cardiac cycle also affected perception. During systole, stimuli were detected and correctly localized less frequently, relating to a shift in perceptual sensitivity. This perceptual attenuation was accompanied by the suppression of only late SEP components (P300) and was stronger for individuals with a more stable heart rate. Both heart-related effects were independent of alpha oscillations' influence on somatosensory processing. We explain cardiac cycle timing effects in a predictive coding account and suggest that HEP-related effects might reflect spontaneous shifts between interoception and exteroception or modulations of general attentional resources. Thus, our results provide a general conceptual framework to explain how internal signals can be integrated into our conscious perception of the world.

111 citations


Journal ArticleDOI
TL;DR: It is shown that Shank3B-knockout mice display hypersensitivity to tactile sensory stimulation and that dysfunction of interneurons in somatosensory cortex contributes to the sensory hyper-reactivity in this mouse model of autism.
Abstract: Hyper-reactivity to sensory input is a common and debilitating symptom in individuals with autism spectrum disorders (ASD), but the neural basis underlying sensory abnormality is not completely understood. Here we examined the neural representations of sensory perception in the neocortex of a Shank3B-/- mouse model of ASD. Male and female Shank3B-/- mice were more sensitive to relatively weak tactile stimulation in a vibrissa motion detection task. In vivo population calcium imaging in vibrissa primary somatosensory cortex (vS1) revealed increased spontaneous and stimulus-evoked firing in pyramidal neurons but reduced activity in interneurons. Preferential deletion of Shank3 in vS1 inhibitory interneurons led to pyramidal neuron hyperactivity and increased stimulus sensitivity in the vibrissa motion detection task. These findings provide evidence that cortical GABAergic interneuron dysfunction plays a key role in sensory hyper-reactivity in a Shank3 mouse model of ASD and identify a potential cellular target for exploring therapeutic interventions.

96 citations


Journal ArticleDOI
03 Sep 2020-Nature
TL;DR: A reversal learning task for head-fixed mice, monitored the activity of neurons of the lateral OFC using two-photon calcium imaging and investigated how OFC dynamically interacts with primary somatosensory cortex (S1) to identify direct long-range projections that can feed this activity back to S1 as value prediction error.
Abstract: Adaptive behaviour crucially depends on flexible decision-making, which in mammals relies on the frontal cortex, specifically the orbitofrontal cortex (OFC)1–9. How OFC encodes decision variables and instructs sensory areas to guide adaptive behaviour are key open questions. Here we developed a reversal learning task for head-fixed mice, monitored the activity of neurons of the lateral OFC using two-photon calcium imaging and investigated how OFC dynamically interacts with primary somatosensory cortex (S1). Mice learned to discriminate ‘go’ from ‘no-go’ tactile stimuli10,11 and adapt their behaviour upon reversal of stimulus–reward contingency (‘rule switch’). Imaging individual neurons longitudinally across all behavioural phases revealed a distinct engagement of S1 and lateral OFC, with S1 neural activity reflecting initial task learning, whereas lateral OFC neurons responded saliently and transiently to the rule switch. We identified direct long-range projections from lateral OFC to S1 that can feed this activity back to S1 as value prediction error. This top-down signal updated sensory representations in S1 by functionally remapping responses in a subpopulation of neurons that was sensitive to reward history. Functional remapping crucially depended on top-down feedback as chemogenetic silencing of lateral OFC neurons disrupted reversal learning, as well as plasticity in S1. The dynamic interaction of lateral OFC with sensory cortex thus implements computations critical for value prediction that are history dependent and error based, providing plasticity essential for flexible decision-making. Dynamic interaction of neurons in lateral orbitofrontal cortex with the sensory cortex implements value-prediction computations that are history dependent and error based, providing plasticity essential for flexible decision-making.

95 citations


Journal ArticleDOI
TL;DR: Three parallel non-overlapping thalamic pathways with distinct representations of tactile and decision-related information during a goal-directed sensorimotor task are revealed and suggest the existence of complementary segregated information streams to somatosensory cortices.
Abstract: Subdivisions of mouse whisker somatosensory thalamus project to cortex in a region-specific and layer-specific manner. However, a clear anatomical dissection of these pathways and their functional properties during whisker sensation is lacking. Here, we use anterograde trans-synaptic viral vectors to identify three specific thalamic subpopulations based on their connectivity with brainstem. The principal trigeminal nucleus innervates ventral posterior medial thalamus, which conveys whisker-selective tactile information to layer 4 primary somatosensory cortex that is highly sensitive to self-initiated movements. The spinal trigeminal nucleus innervates a rostral part of the posterior medial (POm) thalamus, signaling whisker-selective sensory information, as well as decision-related information during a goal-directed behavior, to layer 4 secondary somatosensory cortex. A caudal part of the POm, which apparently does not receive brainstem input, innervates layer 1 and 5A, responding with little whisker selectivity, but showing decision-related modulation. Our results suggest the existence of complementary segregated information streams to somatosensory cortices. The thalamus provides sensory input to the cortex, but many aspects of thalamocortical signaling remain unknown. Here, the authors reveal parallel non-overlapping thalamic pathways with distinct representations of tactile and decision-related information during a goal-directed sensorimotor task.

64 citations


Journal ArticleDOI
21 Jul 2020-eLife
TL;DR: In four people with upper-limb amputation, epidural spinal cord stimulation, a common clinical technique to treat pain, evoked somatosensory percepts that were perceived as emanating from the missing arm and hand regardless of time since amputation or level of amputation.
Abstract: Restoring somatosensory feedback to people with limb amputations is crucial to improve prosthetic control. Multiple studies have demonstrated that peripheral nerve stimulation and targeted reinnervation can provide somatotopically relevant sensory feedback. While effective, the surgical procedures required for these techniques remain a major barrier to translatability. Here, we demonstrate in four people with upper-limb amputation that epidural spinal cord stimulation (SCS), a common clinical technique to treat pain, evoked somatosensory percepts that were perceived as emanating from the missing arm and hand. Over up to 29 days, stimulation evoked sensory percepts in consistent locations in the missing hand regardless of time since amputation or level of amputation. Evoked sensations were occasionally described as naturalistic (e.g. touch or pressure), but were often paresthesias. Increasing stimulus amplitude increased the perceived intensity linearly, without increasing area of the sensations. These results demonstrate the potential of SCS as a tool to restore somatosensation after amputations.

60 citations


Journal ArticleDOI
TL;DR: Directing attention to the somatosensory domain enhancedSG of the early theta response, while reducing SG of the later alpha and beta responses, supporting a frontal modulatory effect on the alpha response in primary somatosensing regions.

59 citations


Journal ArticleDOI
TL;DR: Recordings of single-unit activity in the hippocampus and visual cortex of alert monkeys receiving tACS are found to be consistent with the direct stimulation hypothesis and suggest that peripheral somatosensory stimulation is not required for tACs to entrain neurons.
Abstract: Transcranial alternating current stimulation (tACS) modulates brain activity by passing electrical current through electrodes that are attached to the scalp. Because it is safe and noninvasive, tACS holds great promise as a tool for basic research and clinical treatment. However, little is known about how tACS ultimately influences neural activity. One hypothesis is that tACS affects neural responses directly, by producing electrical fields that interact with the brain's endogenous electrical activity. By controlling the shape and location of these electric fields, one could target brain regions associated with particular behaviors or symptoms. However, an alternative hypothesis is that tACS affects neural activity indirectly, via peripheral sensory afferents. In particular, it has often been hypothesized that tACS acts on sensory fibers in the skin, which in turn provide rhythmic input to central neurons. In this case, there would be little possibility of targeted brain stimulation, as the regions modulated by tACS would depend entirely on the somatosensory pathways originating in the skin around the stimulating electrodes. Here, we directly test these competing hypotheses by recording single-unit activity in the hippocampus and visual cortex of alert monkeys receiving tACS. We find that tACS entrains neuronal activity in both regions, so that cells fire synchronously with the stimulation. Blocking somatosensory input with a topical anesthetic does not significantly alter these neural entrainment effects. These data are therefore consistent with the direct stimulation hypothesis and suggest that peripheral somatosensory stimulation is not required for tACS to entrain neurons.

57 citations


Journal ArticleDOI
TL;DR: It is found that a subset of neurons in the ACC receives S1 inputs, and activation of the S1 axon terminals increases the response to noxious stimuli in ACC neurons, which defines a cortical circuit that plays a potentially important role in integrating sensory and affective pain signals.

56 citations


Journal ArticleDOI
TL;DR: FMRI is used to detect the neural processes underlying somatosensory attenuation in male and female healthy human participants and shows that the more participants attenuate the perception of their self-generated touch, the stronger the functional connectivity between the cerebellum and the somatoensory cortical areas.
Abstract: Since the early 1970s, numerous behavioral studies have shown that self-generated touch feels less intense and less ticklish than the same touch applied externally. Computational motor control theories have suggested that cerebellar internal models predict the somatosensory consequences of our movements and that these predictions attenuate the perception of the actual touch. Despite this influential theoretical framework, little is known about the neural basis of this predictive attenuation. This is due to the limited number of neuroimaging studies, the presence of conflicting results about the role and the location of cerebellar activity, and the lack of behavioral measures accompanying the neural findings. Here, we combined psychophysics with fMRI to detect the neural processes underlying somatosensory attenuation in male and female healthy human participants. Activity in bilateral secondary somatosensory areas was attenuated when the touch was presented during a self-generated movement (self-generated touch) than in the absence of movement (external touch). An additional attenuation effect was observed in the cerebellum that is ipsilateral to the passive limb receiving the touch. Importantly, we further found that the degree of functional connectivity between the ipsilateral cerebellum and the contralateral primary and bilateral secondary somatosensory areas was linearly and positively related to the degree of behaviorally assessed attenuation; that is, the more participants perceptually attenuated their self-generated touches, the stronger this corticocerebellar coupling. Collectively, these results suggest that the ipsilateral cerebellum is fundamental in predicting self-generated touch and that this structure implements somatosensory attenuation via its functional connectivity with somatosensory areas.SIGNIFICANCE STATEMENT When we touch our hand with the other, the resulting sensation feels less intense than when another person or a machine touches our hand with the same intensity. Early computational motor control theories have proposed that the cerebellum predicts and cancels the sensory consequences of our movements; however, the neural correlates of this cancelation remain unknown. By means of fMRI, we show that the more participants attenuate the perception of their self-generated touch, the stronger the functional connectivity between the cerebellum and the somatosensory cortical areas. This provides conclusive evidence about the role of the cerebellum in predicting the sensory feedback of our movements and in attenuating the associated percepts via its connections to early somatosensory areas.

Journal ArticleDOI
TL;DR: Using optogenetics and pharmacogenetics in combination with in vivo and in vitro electrophysiology, this study provides evidence for a direct corticospinal pathway from the primary somatosensory cortex that synapses with cervical excitatory neurons and modulates the lumbar locomotor network independently of the motor cortex and other supraspinal locomotor centers.
Abstract: Walking in our complex environment requires continual higher order integrated spatiotemporal information. This information is processed in the somatosensory cortex, and it has long been presumed that it influences movement via descending tracts originating from the motor cortex. Here we show that neuronal activity in the primary somatosensory cortex tightly correlates with the onset and speed of locomotion in freely moving mice. Using optogenetics and pharmacogenetics in combination with in vivo and in vitro electrophysiology, we provide evidence for a direct corticospinal pathway from the primary somatosensory cortex that synapses with cervical excitatory neurons and modulates the lumbar locomotor network independently of the motor cortex and other supraspinal locomotor centers. Stimulation of this pathway enhances speed of locomotion, while inhibition decreases locomotor speed and ultimately terminates stepping. Our findings reveal a novel pathway for neural control of movement whereby the somatosensory cortex directly influences motor behavior, possibly in response to environmental cues.

Journal ArticleDOI
TL;DR: The methodology and preliminary results of the first intraneural single‐unit recordings from the cervical vagus in awake humans are described and provided, using tungsten microelectrodes inserted into the nerve through ultrasound guidance.
Abstract: Key points The vagus nerve is the largest cranial nerve and innervates many structures in the neck, thorax and abdomen. Although single-unit recordings from the vagus nerve have been performed in experimental animals for several decades, no recordings have ever been made from the human vagus nerve. The vagus nerve is routinely stimulated clinically, yet we know little of its physiology in humans. We describe the methodology and provide preliminary results of the first intraneural single-unit recordings from the cervical vagus in awake humans, using tungsten microelectrodes inserted into the nerve through ultrasound guidance. Abstract Intraneural microelectrodes have been used extensively to record from single somatosensory axons supplying muscle, tendons, joints and skin, as well as to record from postganglionic sympathetic axons supplying muscle and skin, in accessible peripheral nerves in awake humans. However, the vagus nerve has never been targeted, probably because of its close proximity to the carotid artery and jugular vein in the neck. Here, we report the first unitary recordings from the human cervical vagus nerve, obtained using ultrasound-guided insertion of tungsten microelectrodes into fascicles of the nerve. We identified tonically-active neurones in which firing rates were inversely related to heart rate (and directly related to the cardiac interval), which we classified as putative preganglionic parasympathetic axons directed to the sinoatrial node of the heart. We also recorded from tonically-active presumed sensory axons from the airways and presumed motor axons to the larynx. This new methodology opens exciting new opportunities for studying the physiology of the human vagus nerve in health and disease.

Journal ArticleDOI
TL;DR: Extensive morphological and functional integration of axonal projections from intracortically transplanted human iPS cell–derived cortical neurons in brains of rats with ischemic lesions in the cerebral cortex are shown, raising the possibility that injured neural circuitry might be restored by stem cells also in humans affected by stroke.
Abstract: Stem cell transplantation can improve behavioral recovery after stroke in animal models but whether stem cell-derived neurons become functionally integrated into stroke-injured brain circuitry is poorly understood. Here we show that intracortically grafted human induced pluripotent stem (iPS) cell-derived cortical neurons send widespread axonal projections to both hemispheres of rats with ischemic lesions in the cerebral cortex. Using rabies virus-based transsynaptic tracing, we find that at 6 mo after transplantation, host neurons in the contralateral somatosensory cortex receive monosynaptic inputs from grafted neurons. Immunoelectron microscopy demonstrates myelination of the graft-derived axons in the corpus callosum and that their terminals form excitatory, glutamatergic synapses on host cortical neurons. We show that the stroke-induced asymmetry in a sensorimotor (cylinder) test is reversed by transplantation. Light-induced inhibition of halorhodopsin-expressing, grafted neurons does not recreate the impairment, indicating that its reversal is not due to neuronal activity in the graft. However, we find bilateral decrease of motor performance in the cylinder test after light-induced inhibition of either grafted or endogenous halorhodopsin-expressing cortical neurons, located in the same area, and after inhibition of endogenous halorhodopsin-expressing cortical neurons by exposure of their axons to light on the contralateral side. Our data indicate that activity in the grafted neurons, probably mediated through transcallosal connections to the contralateral hemisphere, is involved in maintaining normal motor function. This is an example of functional integration of efferent projections from grafted neurons into the stroke-affected brain's neural circuitry, which raises the possibility that such repair might be achievable also in humans affected by stroke.

Journal ArticleDOI
TL;DR: Using retrograde transneuronal transport of rabies virus to identify the cortical areas that most directly influence parasympathetic and sympathetic control of the rat stomach, it is shown that the two limbs of autonomic control over the stomach are influenced by distinct cortical networks.
Abstract: The central nervous system both influences and is influenced by the gastrointestinal system. Most research on this gut–brain connection has focused on how ascending signals from the gut and its microbiome alter brain function. Less attention has focused on how descending signals from the central nervous system alter gut function. Here, we used retrograde transneuronal transport of rabies virus to identify the cortical areas that most directly influence parasympathetic and sympathetic control of the rat stomach. Cortical neurons that influence parasympathetic output to the stomach originated from the rostral insula and portions of medial prefrontal cortex, regions that are associated with interoception and emotional control. In contrast, cortical neurons that influence sympathetic output to the stomach originated overwhelmingly from the primary motor cortex, primary somatosensory cortex, and secondary motor cortex, regions that are linked to skeletomotor control and action. Clearly, the two limbs of autonomic control over the stomach are influenced by distinct cortical networks.

Journal ArticleDOI
08 Jan 2020-Neuron
TL;DR: Surprisingly, the midbrain dopamine system is an actor not considered before in perception that codes the subjective magnitude of a sensory percept, and this may help to understand where and how sensation transforms into perception in the brain.

Book
18 Jun 2020
TL;DR: The somatosensory system, the reticular formation, and the cranial nerves are studied for their role in the Vascularization of the brain and spinal cord.
Abstract: Overview of the human brain and spinal cord.- Vascularization of the brain and spinal cord.- Notes on techniques.- The somatosensory system.- The reticular formation.- The cranial nerves.- The auditory system.- The visual system.- Motor systems.- The cerebellum.- The basal ganglia.- The autonomic nervous system.- The hypothalamus and hypothalamohypophysial systems.- The limbic system.- The cerebral cortex and complex cerebral functions.

Journal ArticleDOI
22 Jul 2020-Nature
TL;DR: Investigating the somatosensory and visual circuits of the TRN in mice provides insights into how subnetworks of TRN neurons may differentially process distinct classes of thalamic information.
Abstract: Most sensory information destined for the neocortex is relayed through the thalamus, where considerable transformation occurs1,2. One means of transformation involves interactions between excitatory thalamocortical neurons that carry data to the cortex and inhibitory neurons of the thalamic reticular nucleus (TRN) that regulate the flow of those data3–6. Although the importance of the TRN has long been recognised7–9, understanding of its cell types, their organization and their functional properties has lagged behind that of the thalamocortical systems they control. Here we address this by investigating the somatosensory and visual circuits of the TRN in mice. In the somatosensory TRN we observed two groups of genetically defined neurons that are topographically segregated and physiologically distinct, and that connect reciprocally with independent thalamocortical nuclei through dynamically divergent synapses. Calbindin-expressing cells—located in the central core—connect with the ventral posterior nucleus, the primary somatosensory thalamocortical relay. By contrast, somatostatin-expressing cells—which reside along the surrounding edges of the TRN—synapse with the posterior medial thalamic nucleus, a higher-order structure that carries both top-down and bottom-up information10–12. The two TRN cell groups process their inputs in pathway-specific ways. Synapses from the ventral posterior nucleus to central TRN cells transmit rapid excitatory currents that depress deeply during repetitive activity, driving phasic spike output. Synapses from the posterior medial thalamic nucleus to edge TRN cells evoke slower, less depressing excitatory currents that drive more persistent spiking. Differences in the intrinsic physiology of TRN cell types, including state-dependent bursting, contribute to these output dynamics. The processing specializations of these two somatosensory TRN subcircuits therefore appear to be tuned to the signals they carry—a primary central subcircuit tuned to discrete sensory events, and a higher-order edge subcircuit tuned to temporally distributed signals integrated from multiple sources. The structure and function of visual TRN subcircuits closely resemble those of the somatosensory TRN. These results provide insights into how subnetworks of TRN neurons may differentially process distinct classes of thalamic information. In the thalamic reticular nucleus there are two neuron types that are segregated into central and edge zones and receive inputs from different thalamocortical nuclei, creating subcircuits with distinct dynamics.

Journal ArticleDOI
TL;DR: This study reveals the network mechanism of the discrimination of the left and right foot motor imagery, which can provide a novel avenue for the BCI system by unilateral lower limb motor imagery.

Journal ArticleDOI
TL;DR: It is shown that Piezo2 channels, present in the cell body and terminals of corneal neurons, are directly involved in acuteCorneal mechano-nociception and contributes to transduction of mechanical forces by Corneal nociceptors.
Abstract: Mammalian Piezo2 channels are essential for transduction of innocuous mechanical forces by proprioceptors and cutaneous touch receptors. In contrast, mechanical responses of somatosensory nociceptor neurons evoking pain, remain intact or are only partially reduced in Piezo2-deficient mice. In the eye cornea, comparatively low mechanical forces are detected by polymodal and pure mechanosensory trigeminal ganglion neurons. Their activation always evokes ocular discomfort or pain and protective reflexes, thus being a unique model to study mechanotransduction mechanisms in this particular class of nociceptive neurons. Cultured male and female mouse mechano- and polymodal nociceptor corneal neurons display rapidly, intermediately and slowly adapting mechanically activated currents. Immunostaining of the somas and peripheral axons of corneal neurons responding only to mechanical force (pure mechano-nociceptor) or also exhibiting TRPV1 (transient receptor potential cation channel subfamily V member 1) immunoreactivity (polymodal nociceptor) revealed that they express Piezo2. In sensory-specific Piezo2-deficient mice, the distribution of corneal neurons displaying the three types of mechanically evoked currents is similar to the wild type; however, the proportions of rapidly adapting neurons, and of intermediately and slowly adapting neurons were significantly reduced. Recordings of mechano- and polymodal-nociceptor nerve terminals in the corneal surface of Piezo2 conditional knock-out mice revealed a reduced number of mechano-sensitive terminals and lower frequency of nerve terminal impulse discharges under mechanical stimulation. Eye blinks evoked by von Frey filaments applied on the cornea were lower in Piezo2-deficient mice compared with wild type. Together, our results provide direct evidence that Piezo2 channels support mechanically activated currents of different kinetics in corneal trigeminal neurons and contributes to transduction of mechanical forces by corneal nociceptors. SIGNIFICANCE STATEMENT The cornea is a richly innervated and highly sensitive tissue. Low-threshold mechanical forces activate corneal receptors evoking discomfort or pain. To examine the contribution of Piezo2, a low-threshold mechanically activated channel, to acute ocular pain, we characterized the mechanosensitivity of corneal sensory neurons. By using Piezo2 conditional knock-out mice, we show that Piezo2 channels, present in the cell body and terminals of corneal neurons, are directly involved in acute corneal mechano-nociception. Inhibition of Piezo2 for systemic pain treatment is hindered because of its essential role for mechano-transduction processes in multiple body organs. Still, topical modulation of Piezo2 in the cornea may be useful to selectively relief unpleasant sensations and pain associated with mechanical irritation accompanying many ocular surface disorders.

Journal ArticleDOI
TL;DR: The general anatomy, function and neuronal diversity of cranial sensory ganglia is summarized and an overview of the current knowledge of the transcriptional networks controlling neurogenesis and neuronal diversification in the developing sensory system is provided.
Abstract: Sensory fibers of the peripheral nervous system carry sensation from specific sense structures or use different tissues and organs as receptive fields, and convey this information to the central nervous system. In the head of vertebrates, each cranial sensory ganglia and associated nerves perform specific functions. Sensory ganglia are composed of different types of specialized neurons in which two broad categories can be distinguished, somatosensory neurons relaying all sensations that are felt and visceral sensory neurons sensing the internal milieu and controlling body homeostasis. While in the trunk somatosensory neurons composing the dorsal root ganglia are derived exclusively from neural crest cells, somato- and visceral sensory neurons of cranial sensory ganglia have a dual origin, with contributions from both neural crest and placodes. As most studies on sensory neurogenesis have focused on dorsal root ganglia, our understanding of the molecular mechanisms underlying the embryonic development of the different cranial sensory ganglia remains today rudimentary. However, using single-cell RNA sequencing, recent studies have made significant advances in the characterization of the neuronal diversity of most sensory ganglia. Here we summarize the general anatomy, function and neuronal diversity of cranial sensory ganglia. We then provide an overview of our current knowledge of the transcriptional networks controlling neurogenesis and neuronal diversification in the developing sensory system, focusing on cranial sensory ganglia, highlighting specific aspects of their development and comparing it to that of trunk sensory ganglia.

Journal ArticleDOI
TL;DR: The ability to estimate somatosensory pRFs in humans provides an unprecedented opportunity to examine the neural mechanisms underlying somatosensation and is critical for studying how the brain, body, and environment interact to inform perception and action.

Journal ArticleDOI
TL;DR: It is suggested that spontaneous recovery of somatosensory impairment is a prerequisite for full motor recovery of the upper paretic limb in the first 12 weeks poststroke.
Abstract: Background. Spontaneous recovery early after stroke is most evident during a time-sensitive window of heightened neuroplasticity, known as spontaneous neurobiological recovery. It is unknown whether poststroke upper-limb motor and somatosensory impairment both reflect spontaneous neurobiological recovery or if somatosensory impairment and/or recovery influences motor recovery. Methods. Motor (Fugl-Meyer upper-extremity [FM-UE]) and somatosensory impairments (Erasmus modification of the Nottingham Sensory Assessment [EmNSA-UE]) were measured in 215 patients within 3 weeks and at 5, 12, and 26 weeks after a first-ever ischemic stroke. The longitudinal association between FM-UE and EmNSA-UE was examined in patients with motor and somatosensory impairments (FM-UE ≤ 60 and EmNSA-UE ≤ 37) at baseline. Results. A total of 94 patients were included in the longitudinal analysis. EmNSA-UE increased significantly up to 12 weeks poststroke. The longitudinal association between motor and somatosensory impairment disappeared when correcting for progress of time and was not significantly different for patients with severe baseline somatosensory impairment. Patients with a FM-UE score ≥18 at 26 weeks (n = 55) showed a significant positive association between motor and somatosensory impairments, irrespective of progress of time. Conclusions. Progress of time, as a reflection of spontaneous neurobiological recovery, is an important factor that drives recovery of upper-limb motor as well as somatosensory impairments in the first 12 weeks poststroke. Severe somatosensory impairment at baseline does not directly compromise motor recovery. The study rather suggests that spontaneous recovery of somatosensory impairment is a prerequisite for full motor recovery of the upper paretic limb.

Journal ArticleDOI
TL;DR: This review expands upon sensory innervation of the skin as a prime example of the heterogeneity and complexity of the somatosensory nervous system as well as characterize defining features of over 15 subtypes of sensory neurons that innervate the skin of the mouse.
Abstract: The simple tripartite classification of sensory neurons as A-beta, A-delta, and C fibers fails to convey the complexity of the neurons that encode stimuli as diverse as the texture of a surface, the location of a pinprick, or the direction of hair movement as a breeze moves across the skin. It has also proven to be inadequate when investigating the molecular mechanisms underlying pain, which can encompass any combination of chemical, tactile, and thermal modalities. Beginning with a brief overview of visceral and sensory neuroanatomy, this review expands upon sensory innervation of the skin as a prime example of the heterogeneity and complexity of the somatosensory nervous system. Neuroscientists have characterized defining features of over 15 subtypes of sensory neurons that innervate the skin of the mouse. This has enabled the study of cell-specific mechanisms of pain, which suggests that diverse sensory neuron subtypes may have distinct susceptibilities to toxic injury and different roles in pathologic mechanisms underlying altered sensation. Leveraging this growing body of knowledge for preclinical trials and models of neurotoxicity can vastly improve our understanding of peripheral nervous system dysfunction, advancing the fields of toxicologic pathology and neuropathology alike.

Journal ArticleDOI
19 Mar 2020
TL;DR: Results confirmed that the direct neural pathway from periphery to SI allows effective communication of finger-specific sensory information to transradial amputees.
Abstract: Objective: This study assessed the feasibility to restore finger-specific sensory feedback in transradial amputees with electrical stimulation of evoked tactile sensation (ETS). Methods: Here we investigated primary somatosensory cortical (SI) responses of ETS using Magnetoencephalography. Results: SI activations revealed a causal correlation with peripheral stimulation of projected finger regions on the stump skin. Peak latency was accountable to neural transmission from periphery to SI. Peak intensity of SI response was proportional to the strength of peripheral stimulation, manifesting a direct neural pathway from skin receptors to SI neurons. Active regions in SI at the amputated side were consistent to the finger/hand map of homunculus, forming a mirror imaging to that of the contralateral hand. With sensory feedback, amputees can recognize a pressure at prosthetic fingers as that at the homonymous lost fingers. Conclusions: Results confirmed that the direct neural pathway from periphery to SI allows effective communication of finger-specific sensory information to these amputees.

Journal ArticleDOI
TL;DR: S1 neuroplasticity in cLBP is linked with deficits in tactile acuity and, following acupuncture therapy, may represent early mechanistic changes in somatosensory processing that track with improved tactile acuit.

Journal ArticleDOI
TL;DR: It is found that optogenetic activation of superior colliculus changes the input–output relationship of neurons in somatosensory cortex, enhancing responses to low amplitude whisker deflections and mediated via a powerful di-synaptic pathway through the thalamus.
Abstract: The cortex modulates activity in superior colliculus via a direct projection. What is largely unknown is whether (and if so how) the superior colliculus modulates activity in the cortex. Here, we investigate this issue and show that optogenetic activation of superior colliculus changes the input-output relationship of neurons in somatosensory cortex, enhancing responses to low amplitude whisker deflections. While there is no direct pathway from superior colliculus to somatosensory cortex, we found that activation of superior colliculus drives spiking in the posterior medial (POm) nucleus of the thalamus via a powerful monosynaptic pathway. Furthermore, POm neurons receiving input from superior colliculus provide monosynaptic excitatory input to somatosensory cortex. Silencing POm abolished the capacity of superior colliculus to modulate cortical whisker responses. Our findings indicate that the superior colliculus, which plays a key role in attention, modulates sensory processing in somatosensory cortex via a powerful di-synaptic pathway through the thalamus.

Journal ArticleDOI
TL;DR: It is reported that tactile experience enrichment improves memory and alleviates anxiety by remodeling neurons along the dorsoventral axis of the dentate gyrus in adult mice, and adulthood tactile enrichment attenuates early-life stress-induced memory deficits and anxiety-related behavior.
Abstract: Touch can positively influence cognition and emotion, but the underlying mechanisms remain unclear. Here, we report that tactile experience enrichment improves memory and alleviates anxiety by remodeling neurons along the dorsoventral axis of the dentate gyrus (DG) in adult mice. Tactile enrichment induces differential activation and structural modification of neurons in the dorsal and ventral DG, and increases the presynaptic input from the lateral entorhinal cortex (LEC), which is reciprocally connected with the primary somatosensory cortex (S1), to tactile experience-activated DG neurons. Chemogenetic activation of tactile experience-tagged dorsal and ventral DG neurons enhances memory and reduces anxiety respectively, whereas inactivation of these neurons or S1-innervated LEC neurons abolishes the beneficial effects of tactile enrichment. Moreover, adulthood tactile enrichment attenuates early-life stress-induced memory deficits and anxiety-related behavior. Our findings demonstrate that enriched tactile experience retunes the pathway from S1 to DG and enhances DG neuronal plasticity to modulate cognition and emotion. Touch can positively modulate cognitive performance and emotional response. Here the authors demonstrate that enriched tactile experience improves memory and reduces anxiety in adult mice by remodelling the pathway from the primary somatosensory cortex to the dentate gyrus.

Book ChapterDOI
29 Feb 2020
TL;DR: The cerebral cortex is the hierarchically highest unit of the mammalian brain and represents the entire afferent sensory information (somatosensory, visual, auditory, gustatory, olfactory) in a topic fashion.
Abstract: The cerebral cortex is the hierarchically highest unit of the mammalian brain. The entire afferent sensory information (somatosensory, visual, auditory, gustatory, olfactory) is represented there mostly in a topic fashion. With the exception of olfaction, all the mentioned sensory qualities are transferred to the cerebral cortex via the dorsal thalamus (► Chap. 8). The primary motor cortex is the site of origin of the corticospinal tract executing voluntary movements. A loop of neurons ensures the communication of the cortex with the cerebellum starting in the frontal cortex, reaching the pontine nuclei (► Chap. 6) which in turn transmit signals to the cerebellum. From there the way back to the cortex is realized via the thalamic motor nuclei (► Chap. 8) to the cerebral cortex. Secondary and tertiary association areas of the cerebral cortex compute incoming signals from the primary cortices and link different qualities.

Journal ArticleDOI
TL;DR: Evidence is given for a serial representation of stimulus intensity and detection, as reflected by the P50 and N150 amplitude, respectively, which seems to depend on the current brain state, rendering upcoming stimulation being reportable or not.